Latest news with #OrionB


Sustainability Times
21-07-2025
- Science
- Sustainability Times
For the First Time in History, Astronomers Capture the Moment a Distant Solar System Is Born in Deep Space
IN A NUTSHELL 🌌 Scientists observed the formation of a new solar system around HOPS-315 , 1,300 light-years away. , 1,300 light-years away. 🔭 Advanced telescopes JWST and ALMA captured the condensation of solid particles from hot gas. and captured the condensation of solid particles from hot gas. 🔥 The discovery reveals the role of high-temperature minerals like forsterite and enstatite in planetary formation. and in planetary formation. 🌟 Findings provide insights into the early conditions similar to those that shaped our own solar system. In a groundbreaking moment for astronomy, scientists have observed the birth of a new solar system, offering a rare glimpse into the universe's early stages. Utilizing some of the world's most advanced telescopes, researchers have captured the initial phases of planet formation around a young star located 1,300 light-years away. This discovery not only deepens our understanding of how planetary systems like our own are formed but also highlights the remarkable advances in observational technology. The findings provide a window into the processes that have shaped our cosmic neighborhood, allowing us to explore the intricate dance of creation occurring in the distant reaches of space. Unveiling the Birth of a New Solar System At the heart of this discovery is the young protostar, HOPS-315, nestled within the Orion B molecular cloud. This region, located approximately 1,300 light-years away, serves as a cradle for new stars and planets. For the first time, scientists have detected the initial condensation of solid particles from hot gas, marking the earliest phase of planet formation. This process was captured using the James Webb Space Telescope (JWST) and the Atacama Large Millimeter/submillimeter Array (ALMA), two cutting-edge instruments that have revolutionized our understanding of the universe. The significance of this discovery cannot be overstated. By observing the very beginning of planetary formation, researchers can draw parallels to the early history of our own solar system. The solid particles identified around HOPS-315 are akin to the building blocks that eventually coalesced into the planets orbiting our Sun today. This insight provides a unique opportunity to study the conditions necessary for planet formation and the factors that influence the birth of solar systems. 'They Finally Found the Universe's Missing Matter!': Astronomers Stagger the Scientific World by Pinpointing Hidden Material in Colossal Cosmic Webs The Role of Advanced Telescopic Technology The unprecedented detail of this observation was made possible by the JWST and ALMA, which allowed scientists to peer deep into the disk surrounding HOPS-315. These telescopes detected the presence of silicon monoxide, a key component in the formation of silicate minerals. These minerals were found condensing at a distance comparable to the asteroid belt in our solar system, illustrating the early stages of planet formation. Edwin Bergin, an astrophysicist at the University of Michigan, emphasized the novelty of this finding, highlighting its significance in understanding the formation of protoplanetary disks. The detailed imaging and spectroscopic capabilities of JWST and ALMA enabled researchers to map the distribution of minerals within the disk. This information is crucial for understanding how solid materials accumulate and eventually form planets. By comparing these observations with models of our solar system's early development, scientists can refine their theories and gain deeper insights into the processes that govern planetary formation across the galaxy. 'Like Nothing Ever Seen Before': Astronomers Discover a Colossal Milky Way Cloud Containing the Mass of 160,000 Suns Tracing the Path of Planetary Formation The discovery around HOPS-315 offers a glimpse into the intricate mechanisms that govern the formation of planets. The detection of high-temperature minerals, such as forsterite and enstatite, suggests that intense heat plays a critical role in the early stages of planet formation. These minerals, which are similar to those found in meteorites on Earth, provide evidence of the processes that shaped our own solar system billions of years ago. The concept of a 'thermostat region,' where temperature and pressure conditions allow for the condensation of specific elements, is crucial for understanding how planets form. In the case of HOPS-315, this region is characterized by a delicate balance between vaporization and recondensation, leading to the formation of crystalline minerals. By studying these processes, scientists can unravel the complexities of planetary evolution and gain valuable insights into the factors that influence the formation of diverse celestial bodies. 'NASA Unveils Cosmic Spectacle': Stunning New Images and Sounds of Andromeda Galaxy Leave Astronomers in Absolute Awe A Window into the Universe's Past The study of HOPS-315 not only provides insights into the birth of new solar systems but also serves as a window into the universe's past. By analyzing the spectra collected through JWST's infrared cameras, researchers have confirmed the presence of key minerals and gas-phase molecules, shedding light on the conditions that prevailed during the early stages of star and planet formation. This discovery underscores the importance of understanding the conditions under which solid matter begins to form around new stars. By identifying the chemical composition and motion of these materials, scientists can piece together the puzzle of planetary evolution. The insights gained from this research have far-reaching implications for our understanding of the universe and the processes that shaped the celestial bodies we observe today. As we continue to explore the cosmos, the discovery of HOPS-315 serves as a reminder of the endless possibilities that await us. With advanced telescopic technology and a deeper understanding of planetary formation, we are poised to uncover more secrets hidden within the universe. How will these discoveries reshape our understanding of the cosmos and our place within it? This article is based on verified sources and supported by editorial technologies. Did you like it? 4.6/5 (28)

17-07-2025
- Science
Astronomers witness dawn of new solar system for 1st time
Astronomers have witnessed the birth of a solar system beyond our own for the first time. An international team of researchers has been able to pinpoint the exact moment when planets began to form around a star by using data captured by the ALMA telescope in Chile and the James Webb Space Telescope, according to a study published in Nature on Wednesday. The astronomers observed hot minerals just beginning to solidify – the first specks of planet-forming material, the astronomers said. A gaseous disk surrounding the young star is the first stages of the assembly process to form a new planetary system, according to the paper. "For the first time, we have identified the earliest moment when planet formation is initiated around a star other than our Sun," Melissa McClure, a professor at Leiden University in the Netherlands and lead author of the study, said in a statement released by the European Southern Observatory (ESO). Planets and small bodies like those in our solar system likely formed through the mixture of interstellar solids with rocky solids that condense from the hot gases surrounding a young host star, astronomers hypothesize. But the specific process of the solar system's formation remains unclear. In our solar system, the first solid material to condense near Earth's present location orbiting the sun is found trapped within ancient meteorites, according to the ESO. Over time, the newly condensed solids bind together and begin the planet formation process as they gain both size and mass. Researchers say they found evidence that these hot minerals have begun to condense in the disc surrounding the young star, or protostar, named HOPS-315. "This process has never been seen before in a protoplanetary disc – or anywhere outside our solar system," said Edwin Bergin, an astronomer at the University of Michigan and co-author of the paper, in a statement. The protostar is located in the Orion B molecular cloud, around 1,300 light-years from Earth, according to the paper, and is positioned in a way that allows a direct view of its inner gaseous disk. One light year is approximately 5.9 trillion miles. The view is rare because jets of gas emitted by protostars, known as outflow, often block the view of the disk, the researchers said. Astronomers were able to observe solids starting to condense from the cooling gas – known as "time zero" for planet formation – by using infrared and millimeter wavelengths from the ground- and space-based telescopes, the researchers said. The Webb telescope, the most powerful telescope ever launched into space, was used to probe the chemical makeup of the material around the protostar, detecting crystalline silicate materials that are a "telltale sign" of early planet formation, according to the paper. The chemical signals appear to be coming from a small region of the disc around the star that's equivalent to the orbit of the asteroid belt around our own sun, according to the ESO. "This hot mineral is the first feedstock that you have to start growing things in the dark," McClure said. The finding marks the first time a planetary system has been identified at such an early stage. While astronomers have previously seen young discs that contain newborn, massive planets like Jupiter, it was not yet proven that the first solid parts of nascent planets, known as planetesimals, must form further back in time, at earlier stages, McClure said. The discovery opens a window into the past of our own solar system, since the formation of the new system likely mimics the conditions that occurred at the dawn of the planetary system that is home to Earth, astronomers said. "This system is one of the best that we know to actually probe some of the processes that happened in our solar system," said Merel van 't Hoff, an astronomer at Purdue University and co-author of the study, said in a statement released by Nature.