logo
#

Latest news with #QuaiseEnergy

'Deepest Hole on Earth': Quaise Energy Unveils Revolutionary Wave Drilling Tech to Pierce the Planet's Crust Like Never Before
'Deepest Hole on Earth': Quaise Energy Unveils Revolutionary Wave Drilling Tech to Pierce the Planet's Crust Like Never Before

Sustainability Times

timea day ago

  • Business
  • Sustainability Times

'Deepest Hole on Earth': Quaise Energy Unveils Revolutionary Wave Drilling Tech to Pierce the Planet's Crust Like Never Before

IN A NUTSHELL 🌍 Quaise Energy has demonstrated its cutting-edge millimeter wave drilling technology on a full-scale oil and gas rig in Houston, Texas. has demonstrated its cutting-edge millimeter wave drilling technology on a full-scale oil and gas rig in Houston, Texas. 🔧 This innovative approach leverages existing oil and gas infrastructure to access superhot geothermal energy, offering a new frontier for clean power. to access superhot geothermal energy, offering a new frontier for clean power. 🔥 Superhot geothermal energy provides a continuous, reliable, and environmentally friendly energy source by driving turbines directly at extreme depths. provides a continuous, reliable, and environmentally friendly energy source by driving turbines directly at extreme depths. 🚀 The successful demonstration marks a crucial step towards transforming the energy landscape, presenting a sustainable alternative to fossil fuels. In an era where the demand for sustainable energy solutions is soaring, Quaise Energy emerges as a pioneering force. The company, founded in 2018, is on a mission to reshape the energy landscape by tapping into the vast potential of superhot geothermal energy. Recently, the company demonstrated its groundbreaking millimeter wave drilling technology on a full-scale oil and gas rig in Houston, Texas. This innovative approach aims to leverage existing oil and gas infrastructure to unlock a clean, abundant, and globally accessible energy source. With the potential to revolutionize energy production, Quaise Energy's advancements mark a significant milestone in the journey towards a sustainable future. The Rise of Millimeter Wave Drilling Millimeter wave drilling represents a technological leap in the energy sector. Unlike conventional drilling techniques, which are limited by depth and temperature constraints, this cutting-edge technology allows for reaching unprecedented depths where temperatures are sufficiently high to tap into superhot geothermal energy. By utilizing millimeter waves, Quaise Energy can bore through hard rock formations, overcoming barriers that have long restricted geothermal exploration. This capability positions the company at the forefront of next-generation energy solutions, promising a method to access clean energy sources that are both sustainable and scalable. The recent demonstration in Houston marks the first successful operation of a hybrid drilling rig, integrating conventional and millimeter wave technologies. This breakthrough not only showcases the feasibility of the approach but also underscores the potential for the existing oil and gas infrastructure to be adapted for geothermal purposes. With the global energy demand rising, the ability to harness such a consistent and clean energy source could be transformative, reducing reliance on fossil fuels and decreasing carbon emissions significantly. 'Tesla Is Over': This New Electric Car With a Miracle Battery Promises 930 Miles of Range and Shocks the Entire Auto Industry Leveraging Existing Infrastructure One of the most compelling aspects of Quaise Energy's approach is its ability to utilize existing oil and gas infrastructure. This strategic move allows for a smoother transition towards sustainable energy production, minimizing the need for extensive new developments. By retrofitting current rigs with millimeter wave technology, the company can expedite the deployment of geothermal power, effectively bridging the gap between traditional energy systems and future innovations. This strategy is not only cost-effective but also environmentally beneficial. By adapting current infrastructure, Quaise Energy mitigates the environmental impact typically associated with building new facilities. Furthermore, this approach enables a more rapid scale-up of geothermal energy production, providing a viable solution to meet the growing demand for clean energy. The integration of millimeter wave drilling into existing platforms could thus play a critical role in the global transition to sustainable energy sources. Longest-Range Drone Ship in History: UK's New 8,500-Mile Vessel Stuns Military Analysts With Unprecedented Unmanned Capabilities The Potential of Superhot Geothermal Energy Superhot geothermal energy represents a largely untapped resource with the potential to supply vast amounts of clean power. At depths where millimeter wave drilling can reach, temperatures are high enough to drive turbines directly, offering a continuous and reliable energy supply. This form of geothermal energy is particularly attractive due to its environmental benefits, as it produces minimal greenhouse gases compared to conventional energy sources. The ability to harness such energy could significantly contribute to reducing global carbon footprints and combating climate change. By tapping into this renewable resource, Quaise Energy aims to provide a new, sustainable energy solution that could serve as a cornerstone for future energy systems. The scalability and constancy of superhot geothermal energy make it an appealing alternative for countries seeking to diversify their energy portfolios and reduce dependence on fossil fuels. Japan Stuns the World with 310,000-Ton Oil Behemoth That Shatters Records and Reinvents the Future of Energy Transport Challenges and Future Prospects Despite its promise, the deployment of millimeter wave drilling technology and the harnessing of superhot geothermal energy are not without challenges. Technical hurdles, such as maintaining equipment integrity at extreme depths and temperatures, must be addressed to ensure the viability of this energy source. Additionally, regulatory frameworks will need to adapt to accommodate this new technology, balancing innovation with safety and environmental considerations. However, the successful demonstration of Quaise Energy's drilling technology provides a hopeful outlook for overcoming these challenges. As the company moves towards full-scale production, the potential for significant advancements in sustainable energy is vast. The continued development and refinement of this technology could lead to widespread adoption, fundamentally altering the energy landscape and paving the way for a cleaner, greener future. As the world continues to grapple with the challenges of climate change and energy security, Quaise Energy's innovations offer a promising glimpse into the future of sustainable energy. By leveraging millimeter wave drilling technology and existing infrastructure, the potential to transform how we produce energy is immense. Could this be the breakthrough that finally shifts the global reliance from fossil fuels to a more sustainable, cleaner energy source? Our author used artificial intelligence to enhance this article. Did you like it? 4.5/5 (25)

The smell of toasted rock could spell victory for geothermal energy
The smell of toasted rock could spell victory for geothermal energy

Yahoo

time13-03-2025

  • Business
  • Yahoo

The smell of toasted rock could spell victory for geothermal energy

One recent day in a warehouse south of downtown Houston, I got a peek at something that just might revolutionize the clean energy transition: a molten orange puddle of instantly liquefied rock. Moments before, an attendant loaded a slug of basalt under a metal-frame structure that looked like something a supervillain might point at a tied-up James Bond, and I was ushered behind a protective barrier. An order went out, the contraption began to whir, and we turned our focus to a TV screen, where the solid rock erupted in a blast of white light that overwhelmed the livestream camera. One mustn't believe everything that appears on a screen, but then Carlos Araque, CEO and co-founder of advanced geothermal startup Quaise Energy, led us back to the rig, and there was the freshly blasted rock. A minute ago, it hit as much as 2,000 degrees Celsius, but the molten goop had already solidified into a crown of shiny obsidian. Heat radiated from it, warming my hand as I hovered it a few inches away. The air smelled like toasted marshmallows, if the marshmallows were made of stone. The flashy demonstration was just one example of how startups are looking to revolutionize geothermal energy production. The U.S. built its biggest geothermal power-plant complex in 1960, but construction has stagnated for decades. Geothermal serves a mere 0.4% of U.S. electricity generation; its nearly 4 gigawatts of capacity amounts to roughly the solar and battery capacity Texas installs in four months these days. The way out of this decades-long malaise may simply be down. The more subterranean heat a geothermal plant can access, the more energy it can generate, and the Earth gets hotter closer to the core. But the intense conditions below a few miles deep rapidly wreck conventional drill bits. Araque figured that if he could build a strong enough drill bit, it could harness this super-deep heat and deliver cheap, clean, and abundant geothermal power, pretty much anywhere. So he left a career in oilfield drilling and formed Quaise in 2018 to do exactly that. Or, more precisely, the company adapted the gyrotron, a tool honed by the nuclear fusion industry that emits millimeter waves, which fall on the electromagnetic spectrum between microwaves and infrared waves. Fusion researchers use them to heat plasma to unfathomably high temperatures. But these waves exert a dramatic effect on rock, so Quaise leadership repurposed them to bore through depths that would demolish conventional drill bits, and perhaps unlock a new golden age of geothermal. Araque likened the technology to the familiar microwave oven, which heats food by zapping it with a particular band of electromagnetic waves that excites water molecules. 'Translate that into rock,' he said. 'Well, rocks love millimeter waves. You put millimeter waves into rock, they soak it up, they light up instantly.' He first pitched me on his super-powered drill bit six years ago. At the time, it all sounded like science fiction, something that Massachusetts Institute of Technology researchers might study and venture capitalists might take a flyer on but that wouldn't materialize as real technology. In fact, Quaise did spin out of an MIT lab, and it did raise venture capital for the idea — more than $100 million to date from Prelude Ventures, Mitsubishi, and others. Seven years into the project, however, here I was, smelling the deep, toasty scent of freshly bruleed rock. Deep geothermal energy suddenly seemed a little less like sci-fi and a little more plausible. Still, Quaise has plenty more work to do before it can deliver its transformative promise — and that starts with getting out of the lab and into the field. By the time I visited in late January, Quaise had been melting rock outside of the lab but on its own property for weeks. I personally witnessed rock-melting in two places: in the hangar, with a drill rig pointing the millimeter-wave beam at a target rock, and in the yard, where a contraption mounted on tank treads blasted into a rock sample placed in a concrete receptacle on the ground. 'This is the first demonstration of capability, outside, at full scale,' Araque said of the installation. These tests are necessary to calibrate the novel combination of millimeter-wave emitter and conventional oil-drilling rig. (The Quaise founders know their way around that world, having come from drilling powerhouse Schlumberger.) Quaise proved it can transmit the waves while moving the device, something that the nuclear fusion folks never needed to test. The company's 'articulated wave guide' also showed it can achieve a consistent round shape for its borehole, at least over short distances. The tests so far amount to the karate demonstration where someone chops through a stack of two-by-fours: Most impressive but not a commercially viable way to chop wood. The next step is obvious — Quaise needs to get out and drill into the earth. That's coming soon. Quaise obtained a test site in north Houston where it can drill up to 100 feet underground. The 100-kilowatt gyrotron system I saw firing up in the warehouse has already been moved to this field site, where Quaise is connecting it to a full-scale drilling rig owned by partner Nabors Industries; its mast will soar 140 feet tall. Drilling should begin in April, cutting into an existing well stuffed with rock samples — outdoors but still a controlled environment. Soon after, Quaise will swap that out for a new 1-megawatt system, delivering 10 times the power to speed up subsurface boring and maintain an 8-inch-diameter hole, bigger than the initial test holes. That device will use a comparable amount of power as is used by conventional drilling rigs, Araque noted. Drilling 100 feet down is a start but far from sufficient. The company also secured a quarry site near Austin that provides the opportunity to drill nearly 500 feet through pure granite. Once the technology graduates to drilling thousands of feet, Quaise plans to piggyback on the existing drilling industry with its 'BYOG' approach. 'Bring a gyrotron, bring the waveguide, bring the power supply, plug it into the drilling rig,' Araque said. 'There's thousands of drilling rigs in the world. You just go and plug and play into them.' If and when the time comes to drill for actual power plants, Quaise aims to ride conventional drilling technologies as far as they'll go. The plan is to hire traditional rigs to burrow through the first 2 to 3 kilometers of subsurface (up to nearly 2 miles) until the drill hits what's known as basement rock. After hitting basement rock, Quaise will swap drill bits for its millimeter-wave drill and blast to about 5 miles deep in favorable locations — even that far down, some places have easier access to heat than others. Operators will pump nitrogen gas into the hole to flush out the dust from vaporized rock as the drill moves ever deeper. Quaise leaders did not disclose a timeline for the company's first commercial deep drilling. At that point, Quaise will need to build an actual power plant and navigate the myriad permitting and transmission-connection hurdles that face renewables developers broadly. The company is running this development process in-house and already has multiple geothermal leases secured, a spokesperson noted. In the meantime, a handful of other startups are making headway on commercial-scale geothermal plants, albeit with different approaches. Fervo Energy has applied fracking technologies to geothermal drilling to make the process more efficient; after a successful 3.5-megawatt trial project in Nevada, the company began drilling the 400-megawatt Cape Station plant in Utah. Closer in principle to Quaise, a Canadian startup called Eavor is developing ways to drill deeper than was economically practical before. Instead of reinventing the drill itself, Eavor defends it with insulation and 'shock cooling' to avoid crumbling in deep, high-temperature rock. 'Most oil and gas directional drilling tools are rated for 180C temperatures, [but Eavor's] insulated drilling pipe has a cooling effect on the tools making them work at even higher temperatures just by insulating the pipe,' a company spokesperson said in an email. Eavor notched a big win in 2023, when it drilled a test well in New Mexico to depths of 3.4 miles and through rock as hot as 250 degrees Celsius. Now it's drilling a closed-loop project in Germany to generate 8.2 megawatts of electricity and 64 megawatts of heating. Taken together, geothermal innovators like Quaise, along with the somewhat less science-fictiony enhanced geothermal startups like Fervo and Eavor, could produce the 'clean firm' power that energy modelers say is necessary to balance out cheap wind and solar in the quest to decarbonize the electrical grid. 'Advanced geothermal technologies could unlock a terawatt-scale resource that can deliver clean energy on demand,' said Jesse Jenkins, an authority on net-zero modeling and assistant professor at Princeton University. 'That would be an enormously valuable tool to have in our toolbox.' Quaise could in theory supply those other geothermal innovators with a better type of drill to extend their range. But Araque insisted Quaise wants to be in the power generation business, not the widget business. The company also has to manage an evident chokepoint in its development: those highly specialized gyrotrons. Quaise owns four, Araque said; the global gyrotron supply chain currently can't handle an order for 10 more. That's not an issue while Quaise works its way up to deep subsurface drilling, but the growth trajectory of the gyrotron suppliers could limit how much power-plant drilling the company can perform simultaneously in the future. The work to extend from boring a few inches of rock to miles of it should not be underestimated, but Quaise has already crossed the more daunting chasm from never melting rock with an energy beam to doing so daily.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store