logo
#

Latest news with #Ramsarconvention

'Salty soup': climate threat to vital lagoon ecosystems
'Salty soup': climate threat to vital lagoon ecosystems

The Advertiser

time4 days ago

  • Science
  • The Advertiser

'Salty soup': climate threat to vital lagoon ecosystems

Healthy, well-balanced coastal lagoons at the intersection of salty seas and fresh waterways make ideal fish nurseries and attractive spots for migratory birds. Yet a warming climate paired with competition for water upstream is degrading these ecological hotspots, ramping up their salt content and putting marine life under stress. Emerging research suggests the potential for lagoon wetlands to act as carbon sinks - when an ecosystems draws down more carbon dioxide than it releases - is hindered when in a degraded state. University of Adelaide microbial ecologist Christopher Keneally said the habitats tend to emit more methane and nitrous oxide, both potent greenhouse gas emissions, when in poor shape. His post-doctoral research focused on the Ramsar-listed Coorong in South Australia, the traditional lands of the Ngarrindjeri people, underlines the importance of keeping these critical habitats in good health. It's not just an Australian problem, he explained, with brackish wetlands in arid and temperate climate zones worldwide under threat from rising temperatures. Characterised by somewhat choked ocean access, lagoons are already under pressure from human activity as freshwater use by towns, farms and industry leaves less for the environment at the end of river basins. Now higher rates of evaporation under rising temperatures, less rainfall, and sea level rise bringing in more saltwater from the ocean are contributing to higher salt and nutrient concentrations. "A single hot, dry summer, like the one we have recently experienced, can completely shift this important habitat into a salty, green soup," Dr Keneally said. Such conditions upset the invisible and delicate "microbiomes" of lagoon waters, with microbial diversity diminished while salt-tolerant species survive. Unbalanced microbial communities can potentially lead to harmful algae blooms and low-oxygen "dead zones" that kill fish. In addition, microbial species with anaerobic metabolisms favour high salinity environments. These species tend to produce methane, undermining the habitat's role as a productive carbon sink. While an emerging area of research, Dr Keneally said estimations of methane production were "probably underestimated" and should be better integrated into global climate models. Occasional heavy rainfall and floods serve to "freshen up" coastal wetlands, rebalancing salt and other nutrient levels, as occurred in the South Australia's Coorong region in 2022. Yet sporadic downpours cannot be relied upon. "Conditions might improve for a couple of years, but those high rainfall events are not dependable, and in the dry periods, we often see permanent losses of biodiversity, Dr Keneally said. Careful management of freshwater releases to keep salinity and nutrient levels at optimal levels was billed as part of the solution. Listed as an internationally-important wetland under the Ramsar convention for migratory birds in the 1980s, the Coorong has long been a research priority and its condition taken seriously. The Millennium Drought led to the creation of the Murray Darling Basin to better manage water flows in the region, though balancing the needs of irrigators, towns and the environment has long been a fraught issue. Long-time Coorong fisherman Glen Hill believes the limited water reserved for the environment - half the amount recommended by scientists - should be released more strategically. The owner of Coorong Wild Seafood said the north of the lagoon was in great shape as freshwater from the river mouth could be easily released into it, while the more isolated south area was in a "terrible" state. He said better-timed water releases to coincide with favourable winds and weather conditions could help more freshwater enter the troubled southern lagoon. Mr Hill has been fishing the area for the prized Yellow-eye mullet and other commercially-important species for decades. Situated at the end of the Murray Darling Basin, Mr Hill said the Coorong was a highly productive fishery thanks to the high levels of nutrient "building blocks" swept downstream. Yet he was acutely familiar with the "domino effect" of harmfully-high salinity levels, knocking out species low on the food chain and leaving fish with little to eat. "When you get to around two times sea water salinity, things start to really go wrong," he said. A spokesperson from the South Australian Department for Environment and Water said the government was committed to protecting the Coorong's ecological character. "This work is achieved by optimising delivery of water for the environment and investing in infrastructure and restoration strategies to improve and protect the health of the system," the spokesperson said. The health of the lagoon vastly improved during the 2022 River Murray floods but the spokesperson said more needed to be done to restore its long-term health. This included refining freshwater flows and working with other basin states to ensure climate science informs its broader management. Healthy, well-balanced coastal lagoons at the intersection of salty seas and fresh waterways make ideal fish nurseries and attractive spots for migratory birds. Yet a warming climate paired with competition for water upstream is degrading these ecological hotspots, ramping up their salt content and putting marine life under stress. Emerging research suggests the potential for lagoon wetlands to act as carbon sinks - when an ecosystems draws down more carbon dioxide than it releases - is hindered when in a degraded state. University of Adelaide microbial ecologist Christopher Keneally said the habitats tend to emit more methane and nitrous oxide, both potent greenhouse gas emissions, when in poor shape. His post-doctoral research focused on the Ramsar-listed Coorong in South Australia, the traditional lands of the Ngarrindjeri people, underlines the importance of keeping these critical habitats in good health. It's not just an Australian problem, he explained, with brackish wetlands in arid and temperate climate zones worldwide under threat from rising temperatures. Characterised by somewhat choked ocean access, lagoons are already under pressure from human activity as freshwater use by towns, farms and industry leaves less for the environment at the end of river basins. Now higher rates of evaporation under rising temperatures, less rainfall, and sea level rise bringing in more saltwater from the ocean are contributing to higher salt and nutrient concentrations. "A single hot, dry summer, like the one we have recently experienced, can completely shift this important habitat into a salty, green soup," Dr Keneally said. Such conditions upset the invisible and delicate "microbiomes" of lagoon waters, with microbial diversity diminished while salt-tolerant species survive. Unbalanced microbial communities can potentially lead to harmful algae blooms and low-oxygen "dead zones" that kill fish. In addition, microbial species with anaerobic metabolisms favour high salinity environments. These species tend to produce methane, undermining the habitat's role as a productive carbon sink. While an emerging area of research, Dr Keneally said estimations of methane production were "probably underestimated" and should be better integrated into global climate models. Occasional heavy rainfall and floods serve to "freshen up" coastal wetlands, rebalancing salt and other nutrient levels, as occurred in the South Australia's Coorong region in 2022. Yet sporadic downpours cannot be relied upon. "Conditions might improve for a couple of years, but those high rainfall events are not dependable, and in the dry periods, we often see permanent losses of biodiversity, Dr Keneally said. Careful management of freshwater releases to keep salinity and nutrient levels at optimal levels was billed as part of the solution. Listed as an internationally-important wetland under the Ramsar convention for migratory birds in the 1980s, the Coorong has long been a research priority and its condition taken seriously. The Millennium Drought led to the creation of the Murray Darling Basin to better manage water flows in the region, though balancing the needs of irrigators, towns and the environment has long been a fraught issue. Long-time Coorong fisherman Glen Hill believes the limited water reserved for the environment - half the amount recommended by scientists - should be released more strategically. The owner of Coorong Wild Seafood said the north of the lagoon was in great shape as freshwater from the river mouth could be easily released into it, while the more isolated south area was in a "terrible" state. He said better-timed water releases to coincide with favourable winds and weather conditions could help more freshwater enter the troubled southern lagoon. Mr Hill has been fishing the area for the prized Yellow-eye mullet and other commercially-important species for decades. Situated at the end of the Murray Darling Basin, Mr Hill said the Coorong was a highly productive fishery thanks to the high levels of nutrient "building blocks" swept downstream. Yet he was acutely familiar with the "domino effect" of harmfully-high salinity levels, knocking out species low on the food chain and leaving fish with little to eat. "When you get to around two times sea water salinity, things start to really go wrong," he said. A spokesperson from the South Australian Department for Environment and Water said the government was committed to protecting the Coorong's ecological character. "This work is achieved by optimising delivery of water for the environment and investing in infrastructure and restoration strategies to improve and protect the health of the system," the spokesperson said. The health of the lagoon vastly improved during the 2022 River Murray floods but the spokesperson said more needed to be done to restore its long-term health. This included refining freshwater flows and working with other basin states to ensure climate science informs its broader management. Healthy, well-balanced coastal lagoons at the intersection of salty seas and fresh waterways make ideal fish nurseries and attractive spots for migratory birds. Yet a warming climate paired with competition for water upstream is degrading these ecological hotspots, ramping up their salt content and putting marine life under stress. Emerging research suggests the potential for lagoon wetlands to act as carbon sinks - when an ecosystems draws down more carbon dioxide than it releases - is hindered when in a degraded state. University of Adelaide microbial ecologist Christopher Keneally said the habitats tend to emit more methane and nitrous oxide, both potent greenhouse gas emissions, when in poor shape. His post-doctoral research focused on the Ramsar-listed Coorong in South Australia, the traditional lands of the Ngarrindjeri people, underlines the importance of keeping these critical habitats in good health. It's not just an Australian problem, he explained, with brackish wetlands in arid and temperate climate zones worldwide under threat from rising temperatures. Characterised by somewhat choked ocean access, lagoons are already under pressure from human activity as freshwater use by towns, farms and industry leaves less for the environment at the end of river basins. Now higher rates of evaporation under rising temperatures, less rainfall, and sea level rise bringing in more saltwater from the ocean are contributing to higher salt and nutrient concentrations. "A single hot, dry summer, like the one we have recently experienced, can completely shift this important habitat into a salty, green soup," Dr Keneally said. Such conditions upset the invisible and delicate "microbiomes" of lagoon waters, with microbial diversity diminished while salt-tolerant species survive. Unbalanced microbial communities can potentially lead to harmful algae blooms and low-oxygen "dead zones" that kill fish. In addition, microbial species with anaerobic metabolisms favour high salinity environments. These species tend to produce methane, undermining the habitat's role as a productive carbon sink. While an emerging area of research, Dr Keneally said estimations of methane production were "probably underestimated" and should be better integrated into global climate models. Occasional heavy rainfall and floods serve to "freshen up" coastal wetlands, rebalancing salt and other nutrient levels, as occurred in the South Australia's Coorong region in 2022. Yet sporadic downpours cannot be relied upon. "Conditions might improve for a couple of years, but those high rainfall events are not dependable, and in the dry periods, we often see permanent losses of biodiversity, Dr Keneally said. Careful management of freshwater releases to keep salinity and nutrient levels at optimal levels was billed as part of the solution. Listed as an internationally-important wetland under the Ramsar convention for migratory birds in the 1980s, the Coorong has long been a research priority and its condition taken seriously. The Millennium Drought led to the creation of the Murray Darling Basin to better manage water flows in the region, though balancing the needs of irrigators, towns and the environment has long been a fraught issue. Long-time Coorong fisherman Glen Hill believes the limited water reserved for the environment - half the amount recommended by scientists - should be released more strategically. The owner of Coorong Wild Seafood said the north of the lagoon was in great shape as freshwater from the river mouth could be easily released into it, while the more isolated south area was in a "terrible" state. He said better-timed water releases to coincide with favourable winds and weather conditions could help more freshwater enter the troubled southern lagoon. Mr Hill has been fishing the area for the prized Yellow-eye mullet and other commercially-important species for decades. Situated at the end of the Murray Darling Basin, Mr Hill said the Coorong was a highly productive fishery thanks to the high levels of nutrient "building blocks" swept downstream. Yet he was acutely familiar with the "domino effect" of harmfully-high salinity levels, knocking out species low on the food chain and leaving fish with little to eat. "When you get to around two times sea water salinity, things start to really go wrong," he said. A spokesperson from the South Australian Department for Environment and Water said the government was committed to protecting the Coorong's ecological character. "This work is achieved by optimising delivery of water for the environment and investing in infrastructure and restoration strategies to improve and protect the health of the system," the spokesperson said. The health of the lagoon vastly improved during the 2022 River Murray floods but the spokesperson said more needed to be done to restore its long-term health. This included refining freshwater flows and working with other basin states to ensure climate science informs its broader management. Healthy, well-balanced coastal lagoons at the intersection of salty seas and fresh waterways make ideal fish nurseries and attractive spots for migratory birds. Yet a warming climate paired with competition for water upstream is degrading these ecological hotspots, ramping up their salt content and putting marine life under stress. Emerging research suggests the potential for lagoon wetlands to act as carbon sinks - when an ecosystems draws down more carbon dioxide than it releases - is hindered when in a degraded state. University of Adelaide microbial ecologist Christopher Keneally said the habitats tend to emit more methane and nitrous oxide, both potent greenhouse gas emissions, when in poor shape. His post-doctoral research focused on the Ramsar-listed Coorong in South Australia, the traditional lands of the Ngarrindjeri people, underlines the importance of keeping these critical habitats in good health. It's not just an Australian problem, he explained, with brackish wetlands in arid and temperate climate zones worldwide under threat from rising temperatures. Characterised by somewhat choked ocean access, lagoons are already under pressure from human activity as freshwater use by towns, farms and industry leaves less for the environment at the end of river basins. Now higher rates of evaporation under rising temperatures, less rainfall, and sea level rise bringing in more saltwater from the ocean are contributing to higher salt and nutrient concentrations. "A single hot, dry summer, like the one we have recently experienced, can completely shift this important habitat into a salty, green soup," Dr Keneally said. Such conditions upset the invisible and delicate "microbiomes" of lagoon waters, with microbial diversity diminished while salt-tolerant species survive. Unbalanced microbial communities can potentially lead to harmful algae blooms and low-oxygen "dead zones" that kill fish. In addition, microbial species with anaerobic metabolisms favour high salinity environments. These species tend to produce methane, undermining the habitat's role as a productive carbon sink. While an emerging area of research, Dr Keneally said estimations of methane production were "probably underestimated" and should be better integrated into global climate models. Occasional heavy rainfall and floods serve to "freshen up" coastal wetlands, rebalancing salt and other nutrient levels, as occurred in the South Australia's Coorong region in 2022. Yet sporadic downpours cannot be relied upon. "Conditions might improve for a couple of years, but those high rainfall events are not dependable, and in the dry periods, we often see permanent losses of biodiversity, Dr Keneally said. Careful management of freshwater releases to keep salinity and nutrient levels at optimal levels was billed as part of the solution. Listed as an internationally-important wetland under the Ramsar convention for migratory birds in the 1980s, the Coorong has long been a research priority and its condition taken seriously. The Millennium Drought led to the creation of the Murray Darling Basin to better manage water flows in the region, though balancing the needs of irrigators, towns and the environment has long been a fraught issue. Long-time Coorong fisherman Glen Hill believes the limited water reserved for the environment - half the amount recommended by scientists - should be released more strategically. The owner of Coorong Wild Seafood said the north of the lagoon was in great shape as freshwater from the river mouth could be easily released into it, while the more isolated south area was in a "terrible" state. He said better-timed water releases to coincide with favourable winds and weather conditions could help more freshwater enter the troubled southern lagoon. Mr Hill has been fishing the area for the prized Yellow-eye mullet and other commercially-important species for decades. Situated at the end of the Murray Darling Basin, Mr Hill said the Coorong was a highly productive fishery thanks to the high levels of nutrient "building blocks" swept downstream. Yet he was acutely familiar with the "domino effect" of harmfully-high salinity levels, knocking out species low on the food chain and leaving fish with little to eat. "When you get to around two times sea water salinity, things start to really go wrong," he said. A spokesperson from the South Australian Department for Environment and Water said the government was committed to protecting the Coorong's ecological character. "This work is achieved by optimising delivery of water for the environment and investing in infrastructure and restoration strategies to improve and protect the health of the system," the spokesperson said. The health of the lagoon vastly improved during the 2022 River Murray floods but the spokesperson said more needed to be done to restore its long-term health. This included refining freshwater flows and working with other basin states to ensure climate science informs its broader management.

'Salty soup': climate threat to vital lagoon ecosystems
'Salty soup': climate threat to vital lagoon ecosystems

West Australian

time4 days ago

  • Science
  • West Australian

'Salty soup': climate threat to vital lagoon ecosystems

Healthy, well-balanced coastal lagoons at the intersection of salty seas and fresh waterways make ideal fish nurseries and attractive spots for migratory birds. Yet a warming climate paired with competition for water upstream is degrading these ecological hotspots, ramping up their salt content and putting marine life under stress. Emerging research suggests the potential for lagoon wetlands to act as carbon sinks - when an ecosystems draws down more carbon dioxide than it releases - is hindered when in a degraded state. University of Adelaide microbial ecologist Christopher Keneally said the habitats tend to emit more methane and nitrous oxide, both potent greenhouse gas emissions, when in poor shape. His post-doctoral research focused on the Ramsar-listed Coorong in South Australia, the traditional lands of the Ngarrindjeri people, underlines the importance of keeping these critical habitats in good health. It's not just an Australian problem, he explained, with brackish wetlands in arid and temperate climate zones worldwide under threat from rising temperatures. Characterised by somewhat choked ocean access, lagoons are already under pressure from human activity as freshwater use by towns, farms and industry leaves less for the environment at the end of river basins. Now higher rates of evaporation under rising temperatures, less rainfall, and sea level rise bringing in more saltwater from the ocean are contributing to higher salt and nutrient concentrations. "A single hot, dry summer, like the one we have recently experienced, can completely shift this important habitat into a salty, green soup," Dr Keneally said. Such conditions upset the invisible and delicate "microbiomes" of lagoon waters, with microbial diversity diminished while salt-tolerant species survive. Unbalanced microbial communities can potentially lead to harmful algae blooms and low-oxygen "dead zones" that kill fish. In addition, microbial species with anaerobic metabolisms favour high salinity environments. These species tend to produce methane, undermining the habitat's role as a productive carbon sink. While an emerging area of research, Dr Keneally said estimations of methane production were "probably underestimated" and should be better integrated into global climate models. Occasional heavy rainfall and floods serve to "freshen up" coastal wetlands, rebalancing salt and other nutrient levels, as occurred in the South Australia's Coorong region in 2022. Yet sporadic downpours cannot be relied upon. "Conditions might improve for a couple of years, but those high rainfall events are not dependable, and in the dry periods, we often see permanent losses of biodiversity, Dr Keneally said. Careful management of freshwater releases to keep salinity and nutrient levels at optimal levels was billed as part of the solution. Listed as an internationally-important wetland under the Ramsar convention for migratory birds in the 1980s, the Coorong has long been a research priority and its condition taken seriously. The Millennium Drought led to the creation of the Murray Darling Basin to better manage water flows in the region, though balancing the needs of irrigators, towns and the environment has long been a fraught issue. Long-time Coorong fisherman Glen Hill believes the limited water reserved for the environment - half the amount recommended by scientists - should be released more strategically. The owner of Coorong Wild Seafood said the north of the lagoon was in great shape as freshwater from the river mouth could be easily released into it, while the more isolated south area was in a "terrible" state. He said better-timed water releases to coincide with favourable winds and weather conditions could help more freshwater enter the troubled southern lagoon. Mr Hill has been fishing the area for the prized Yellow-eye mullet and other commercially-important species for decades. Situated at the end of the Murray Darling Basin, Mr Hill said the Coorong was a highly productive fishery thanks to the high levels of nutrient "building blocks" swept downstream. Yet he was acutely familiar with the "domino effect" of harmfully-high salinity levels, knocking out species low on the food chain and leaving fish with little to eat. "When you get to around two times sea water salinity, things start to really go wrong," he said. A spokesperson from the South Australian Department for Environment and Water said the government was committed to protecting the Coorong's ecological character. "This work is achieved by optimising delivery of water for the environment and investing in infrastructure and restoration strategies to improve and protect the health of the system," the spokesperson said. The health of the lagoon vastly improved during the 2022 River Murray floods but the spokesperson said more needed to be done to restore its long-term health. This included refining freshwater flows and working with other basin states to ensure climate science informs its broader management.

'Salty soup': climate threat to vital lagoon ecosystems
'Salty soup': climate threat to vital lagoon ecosystems

Perth Now

time4 days ago

  • Science
  • Perth Now

'Salty soup': climate threat to vital lagoon ecosystems

Healthy, well-balanced coastal lagoons at the intersection of salty seas and fresh waterways make ideal fish nurseries and attractive spots for migratory birds. Yet a warming climate paired with competition for water upstream is degrading these ecological hotspots, ramping up their salt content and putting marine life under stress. Emerging research suggests the potential for lagoon wetlands to act as carbon sinks - when an ecosystems draws down more carbon dioxide than it releases - is hindered when in a degraded state. University of Adelaide microbial ecologist Christopher Keneally said the habitats tend to emit more methane and nitrous oxide, both potent greenhouse gas emissions, when in poor shape. His post-doctoral research focused on the Ramsar-listed Coorong in South Australia, the traditional lands of the Ngarrindjeri people, underlines the importance of keeping these critical habitats in good health. It's not just an Australian problem, he explained, with brackish wetlands in arid and temperate climate zones worldwide under threat from rising temperatures. Characterised by somewhat choked ocean access, lagoons are already under pressure from human activity as freshwater use by towns, farms and industry leaves less for the environment at the end of river basins. Now higher rates of evaporation under rising temperatures, less rainfall, and sea level rise bringing in more saltwater from the ocean are contributing to higher salt and nutrient concentrations. "A single hot, dry summer, like the one we have recently experienced, can completely shift this important habitat into a salty, green soup," Dr Keneally said. Such conditions upset the invisible and delicate "microbiomes" of lagoon waters, with microbial diversity diminished while salt-tolerant species survive. Unbalanced microbial communities can potentially lead to harmful algae blooms and low-oxygen "dead zones" that kill fish. In addition, microbial species with anaerobic metabolisms favour high salinity environments. These species tend to produce methane, undermining the habitat's role as a productive carbon sink. While an emerging area of research, Dr Keneally said estimations of methane production were "probably underestimated" and should be better integrated into global climate models. Occasional heavy rainfall and floods serve to "freshen up" coastal wetlands, rebalancing salt and other nutrient levels, as occurred in the South Australia's Coorong region in 2022. Yet sporadic downpours cannot be relied upon. "Conditions might improve for a couple of years, but those high rainfall events are not dependable, and in the dry periods, we often see permanent losses of biodiversity, Dr Keneally said. Careful management of freshwater releases to keep salinity and nutrient levels at optimal levels was billed as part of the solution. Listed as an internationally-important wetland under the Ramsar convention for migratory birds in the 1980s, the Coorong has long been a research priority and its condition taken seriously. The Millennium Drought led to the creation of the Murray Darling Basin to better manage water flows in the region, though balancing the needs of irrigators, towns and the environment has long been a fraught issue. Long-time Coorong fisherman Glen Hill believes the limited water reserved for the environment - half the amount recommended by scientists - should be released more strategically. The owner of Coorong Wild Seafood said the north of the lagoon was in great shape as freshwater from the river mouth could be easily released into it, while the more isolated south area was in a "terrible" state. He said better-timed water releases to coincide with favourable winds and weather conditions could help more freshwater enter the troubled southern lagoon. Mr Hill has been fishing the area for the prized Yellow-eye mullet and other commercially-important species for decades. Situated at the end of the Murray Darling Basin, Mr Hill said the Coorong was a highly productive fishery thanks to the high levels of nutrient "building blocks" swept downstream. Yet he was acutely familiar with the "domino effect" of harmfully-high salinity levels, knocking out species low on the food chain and leaving fish with little to eat. "When you get to around two times sea water salinity, things start to really go wrong," he said. A spokesperson from the South Australian Department for Environment and Water said the government was committed to protecting the Coorong's ecological character. "This work is achieved by optimising delivery of water for the environment and investing in infrastructure and restoration strategies to improve and protect the health of the system," the spokesperson said. The health of the lagoon vastly improved during the 2022 River Murray floods but the spokesperson said more needed to be done to restore its long-term health. This included refining freshwater flows and working with other basin states to ensure climate science informs its broader management.

First rains, now flamingoes: This May isa month for early arrivals across Maha
First rains, now flamingoes: This May isa month for early arrivals across Maha

Time of India

time5 days ago

  • Climate
  • Time of India

First rains, now flamingoes: This May isa month for early arrivals across Maha

Nashik: This May is turning out to be a month of early arrivals in Maharashtra — first that of monsoon and now flamingoes. Over 300 flamingoes have been spotted in the Nandur Madhyameshwar Wildlife Sanctuary, around 30km from this north Maharashtra city, almost a month ahead of schedule. Tired of too many ads? go ad free now The forest department has attributed the early arrival of the wading bird in the family Phoenicopteridae to the heavy showers lashing Nashik district since the beginning of May. "This is the first time flamingoes have arrived at the Nandur Madhyameshwar wetland in May. Typically, flamingoes arrive at the wetland in the second half of June, or after the first two to three spells of rain," said Hemant Ubale, assistant conservator of forest for the sanctuary. The southwest monsoon entered parts of Maharashtra in Sindhudurg and adjoining areas on May 25— at least 10 days ahead of its normal arrival date, June 5, in the state. "But rain in Nashik had started in the first week of May itself. We have already spotted a flock of over 300 flamingoes at the Nandur Madhyameshwar wildlife sanctuary," Niphad taluka, which houses Nandur Madhyameshwar wildlife sanctuary, received 114.4mm of rainfall in May alone. Nashik district has been receiving rain since May 5. So far this month, the district has received an average rainfall of 98.5mm. Baglan, Nandgaon, Niphad, Sinnar and Chandwad talukas have so far received more than 100mm of rain this month. While Sinnar received 146mm of rainfall, Chandwad received 46 mm of rainfall in May and in Nashik city 192mm of rainfall marked the highest in 42 years. Prior to this, the city had seen such showers (132.2mm) in May 1983. Tired of too many ads? go ad free now Nandur Madhmeshwar is home to 536 species of aquatic and terrestrial plants, eight species of mammals, 265 species of birds, 24 species of freshwater fish and 41 species of butterflies. Thousands of birds migrate to the wetland that houses the sanctuary between Oct and March. The number of tourists also increases during this period every year. In Jan 2020, Nandur Madhmeshwar was declared a Ramsar site—a wetland designated to be of international importance under the Ramsar convention—a first in Maharashtra.

Abandoned 'Deadman's Island' littered with human remains and coffins
Abandoned 'Deadman's Island' littered with human remains and coffins

Daily Mirror

time07-05-2025

  • Entertainment
  • Daily Mirror

Abandoned 'Deadman's Island' littered with human remains and coffins

Deadman's Island in Kent served as a burial ground for convicts who died on 'prison ships' in the 18th and 19th centuries, and is now known for its haunting shoreline littered with human remains One of the rare individuals to visit an abandoned island in Kent in the past two centuries has admitted the sights she witnessed will be forever etched into her memory. Deadman's Island, resting off the north Kent coast just 40 miles from London, harbours a haunting history as the former burial site for prisoners who met their end to disease aboard 'prison ships' over 200 years ago. ‌ Lying where The Swale meets the River Medway and facing Queenborough on the Isle of Sheppey, public access to the island is forbidden to safeguard the habitat of breeding and nesting bird species. ‌ The eerie remnants of Deadman's Island's past denizens are now marked by bones and decaying wooden coffins protruding from the eroded earth. Owned by Natural England and currently leased out, the BBC outlines how Deadman's Island is recognised as both a Site of Special Scientific Interest and by the international Ramsar convention. In a special 2017 segment, BBC's Inside Out was granted exclusive entry. Presenter Natalie Graham described her visit with haunting words: "What I saw there will stay with me forever. This is a really strange sight. I would imagine there can't be anywhere on earth like this," reports Kent Live. Meanwhile, director Sam Supple likened the setting to film: "It is like being on the set of a horror film. It looks so surreal, it's like an art department has designed it. There are open coffins and bones everywhere." Deadman's Island, now chillingly referred to as "Coffin Bay", presents a grim shoreline spectacle with human remains and open casket fragments scattered about. The island has spawned eerie local folklore - stories of spectral hounds with eyes like blood feasting on skulls, an oppressive aura enveloping the place, and whispers of "an island solely occupied by the dead". A BBC documentary captures locals sharing tales of "monsters that fed on the brains of people it caught" and a Queenborough resident who insists she hears a strange "howl" from the island at night. ‌ Yet, Deadman's Island's true history is one of sorrow. In the 1700s and 1800s, 'prison hulks', floating jails, held inmates. The forebodingly named Retribution was one such ship. These captives, some mere children convicted for petty crimes like pickpocketing, were bound for Australia. But those too sick for the journey ended their days aboard these vessels near the Isle of Sheppey, dying in horrific conditions below deck. ‌ Diseases rampaged through the crowded prison ships, resulting in a harrowing mortality rate. The esteemed naval historian Professor Eric Grove revealed to a BBC documentary: "A lot of crimes carried the death penalty, but as a way of being humane and also to inhabit the colonies, it was decided it would be good to transport convicts. But you tended to find that if people were not considered healthy enough to take the voyage to Australia, they would be left in the hulks." He explained further: "The major problem really was you had a lot of men together, or a lot of boys together, and therefore if an epidemic began to occur, then it would spread and this was particularly important in the early 1830s, when Retribution was here, because there was the cholera epidemic." The hapless victims who perished were buried anonymously on Deadman's Island, in a bid to curb the spread of disease and protect the local community. These now-exposed resting places are visible at low tide, yet there's no knowledge of who these prisoners were. ‌ Specialists face quandaries when considering the reburial of these remains due to the relentless changing tides which threaten the preservation of the bones and drag them out to sea. In a related turn of events, more human remains have been discovered in Chatham. These remains are from French prisoners held captive during the Napoleonic Wars. After dying from various diseases, they found their final resting place in the neighbouring swamps. However, as the coastline eroded, their graves were exposed, prompting exhumation and reburial on St Mary's Island. The remains were later moved again during redevelopment, to St George's Church in Chatham Maritime. Mr Supple noted: "There are memorials to other prisoners who died aboard hulks, such as one in Chatham, Kent, but these men have nothing."

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store