Latest news with #ResearchTeam


Malay Mail
10 hours ago
- Science
- Malay Mail
PolyU-led research reveals that sensory and motor inputs help large language models represent complex concepts
A research team led by Prof. Li Ping, Sin Wai Kin Foundation Professor in Humanities and Technology, Dean of the PolyU Faculty of Humanities and Associate Director of the PolyU-Hangzhou Technology and Innovation Research Institute, explored the similarities between large language models and human representations, shedding new light on the extent to which language alone can shape the formation and learning of complex conceptual knowledge. HONG KONG SAR - Media OutReach Newswire - 9 June 2025 - Can one truly understand what "flower" means without smelling a rose, touching a daisy or walking through a field of wildflowers? This question is at the core of a rich debate in philosophy and cognitive science. While embodied cognition theorists argue that physical, sensory experience is essential to concept formation, studies of the rapidly evolving large language models (LLMs) suggest that language alone can build deep, meaningful representations of the exploring the similarities between LLMs and human representations, researchers at The Hong Kong Polytechnic University (PolyU) and their collaborators have shed new light on the extent to which language alone can shape the formation and learning of complex conceptual knowledge. Their findings also revealed how the use of sensory input for grounding or embodiment – connecting abstract with concrete concepts during learning – affects the ability of LLMs to understand complex concepts and form human-like representations. The study, in collaboration with scholars from Ohio State University, Princeton University and City University of New York, was recently published in Nature Human Behaviour Led by Prof. LI Ping, Sin Wai Kin Foundation Professor in Humanities and Technology, Dean of the PolyU Faculty of Humanities and Associate Director of the PolyU-Hangzhou Technology and Innovation Research Institute, the research team selected conceptual word ratings produced by state-of-the-art LLMs, namely ChatGPT (GPT-3.5, GPT-4) and Google LLMs (PaLM and Gemini). They compared them with human-generated word ratings of around 4,500 words across non-sensorimotor (e.g., valence, concreteness, imageability), sensory (e.g., visual, olfactory, auditory) and motor domains (e.g., foot/leg, mouth/throat) from the highly reliable and validated Glasgow Norms and Lancaster Norms research team first compared pairs of data from individual humans and individual LLM runs to discover the similarity between word ratings across each dimension in the three domains, using results from human-human pairs as the benchmark. This approach could, for instance, highlight to what extent humans and LLMs agree that certain concepts are more concrete than others. However, such analyses might overlook how multiple dimensions jointly contribute to the overall representation of a word. For example, the word pair "pasta" and "roses" might receive equally high olfactory ratings, but "pasta" is in fact more similar to "noodles" than to "roses" when considering appearance and taste. The team therefore conducted representational similarity analysis of each word as a vector along multiple attributes of non-sensorimotor, sensory and motor dimensions for a more complete comparison between humans and representational similarity analyses revealed that word representations produced by the LLMs were most similar to human representations in the non-sensorimotor domain, less similar for words in sensory domain and most dissimilar for words in motor domain. This highlights LLM limitations in fully capturing humans' conceptual understanding. Non-sensorimotor concepts are understood well but LLMs fall short when representing concepts involving sensory information like visual appearance and taste, and body movement. Motor concepts, which are less described in language and rely heavily on embodied experiences, are even more challenging to LLMs than sensory concepts like colour, which can be learned from textual light of the findings, the researchers examined whether grounding would improve the LLMs' performance. They compared the performance of more grounded LLMs trained on both language and visual input (GPT-4, Gemini) with that of LLMs trained on language alone (GPT-3.5, PaLM). They discovered that the more grounded models incorporating visual input exhibited a much higher similarity with human Li Ping said, "The availability of both LLMs trained on language alone and those trained on language and visual input, such as images and videos, provides a unique setting for research on how sensory input affects human conceptualisation. Our study exemplifies the potential benefits of multimodal learning, a human ability to simultaneously integrate information from multiple dimensions in the learning and formation of concepts and knowledge in general. Incorporating multimodal information processing in LLMs can potentially lead to a more human-like representation and more efficient human-like performance in LLMs in the future."Interestingly, this finding is also consistent with those of previous human studies indicating the representational transfer. Humans acquire object-shape knowledge through both visual and tactile experiences, with seeing and touching objects activating the same regions in human brains. The researchers pointed out that – as in humans – multimodal LLMs may use multiple types of input to merge or transfer representations embedded in a continuous, high-dimensional space. Prof. Li added, "The smooth, continuous structure of embedding space in LLMs may underlie our observation that knowledge derived from one modality could transfer to other related modalities. This could explain why congenitally blind and normally sighted people can have similar representations in some areas. Current limits in LLMs are clear in this respect".Ultimately, the researchers envision a future in which LLMs are equipped with grounded sensory input, for example, through humanoid robotics, allowing them to actively interpret the physical world and act accordingly. Prof. Li said, "These advances may enable LLMs to fully capture embodied representations that mirror the complexity and richness of human cognition, and a rose in LLM's representation will then be indistinguishable from that of humans."Hashtag: #PolyU #HumanCognition #LargeLanguageModels #LLMs #GenerativeAI The issuer is solely responsible for the content of this announcement.

Associated Press
10 hours ago
- Science
- Associated Press
PolyU-led research reveals that sensory and motor inputs help large language models represent complex concepts
HONG KONG SAR - Media OutReach Newswire - 9 June 2025 - Can one truly understand what 'flower' means without smelling a rose, touching a daisy or walking through a field of wildflowers? This question is at the core of a rich debate in philosophy and cognitive science. While embodied cognition theorists argue that physical, sensory experience is essential to concept formation, studies of the rapidly evolving large language models (LLMs) suggest that language alone can build deep, meaningful representations of the world. A research team led by Prof. Li Ping, Sin Wai Kin Foundation Professor in Humanities and Technology, Dean of the PolyU Faculty of Humanities and Associate Director of the PolyU-Hangzhou Technology and Innovation Research Institute, explored the similarities between large language models and human representations, shedding new light on the extent to which language alone can shape the formation and learning of complex conceptual knowledge. By exploring the similarities between LLMs and human representations, researchers at The Hong Kong Polytechnic University (PolyU) and their collaborators have shed new light on the extent to which language alone can shape the formation and learning of complex conceptual knowledge. Their findings also revealed how the use of sensory input for grounding or embodiment – connecting abstract with concrete concepts during learning – affects the ability of LLMs to understand complex concepts and form human-like representations. The study, in collaboration with scholars from Ohio State University, Princeton University and City University of New York, was recently published in Nature Human Behaviour. Led by Prof. LI Ping, Sin Wai Kin Foundation Professor in Humanities and Technology, Dean of the PolyU Faculty of Humanities and Associate Director of the PolyU-Hangzhou Technology and Innovation Research Institute, the research team selected conceptual word ratings produced by state-of-the-art LLMs, namely ChatGPT (GPT-3.5, GPT-4) and Google LLMs (PaLM and Gemini). They compared them with human-generated word ratings of around 4,500 words across non-sensorimotor (e.g., valence, concreteness, imageability), sensory (e.g., visual, olfactory, auditory) and motor domains (e.g., foot/leg, mouth/throat) from the highly reliable and validated Glasgow Norms and Lancaster Norms datasets. The research team first compared pairs of data from individual humans and individual LLM runs to discover the similarity between word ratings across each dimension in the three domains, using results from human-human pairs as the benchmark. This approach could, for instance, highlight to what extent humans and LLMs agree that certain concepts are more concrete than others. However, such analyses might overlook how multiple dimensions jointly contribute to the overall representation of a word. For example, the word pair 'pasta' and 'roses' might receive equally high olfactory ratings, but 'pasta' is in fact more similar to 'noodles' than to 'roses' when considering appearance and taste. The team therefore conducted representational similarity analysis of each word as a vector along multiple attributes of non-sensorimotor, sensory and motor dimensions for a more complete comparison between humans and LLMs. The representational similarity analyses revealed that word representations produced by the LLMs were most similar to human representations in the non-sensorimotor domain, less similar for words in sensory domain and most dissimilar for words in motor domain. This highlights LLM limitations in fully capturing humans' conceptual understanding. Non-sensorimotor concepts are understood well but LLMs fall short when representing concepts involving sensory information like visual appearance and taste, and body movement. Motor concepts, which are less described in language and rely heavily on embodied experiences, are even more challenging to LLMs than sensory concepts like colour, which can be learned from textual data. In light of the findings, the researchers examined whether grounding would improve the LLMs' performance. They compared the performance of more grounded LLMs trained on both language and visual input (GPT-4, Gemini) with that of LLMs trained on language alone (GPT-3.5, PaLM). They discovered that the more grounded models incorporating visual input exhibited a much higher similarity with human representations. Prof. Li Ping said, 'The availability of both LLMs trained on language alone and those trained on language and visual input, such as images and videos, provides a unique setting for research on how sensory input affects human conceptualisation. Our study exemplifies the potential benefits of multimodal learning, a human ability to simultaneously integrate information from multiple dimensions in the learning and formation of concepts and knowledge in general. Incorporating multimodal information processing in LLMs can potentially lead to a more human-like representation and more efficient human-like performance in LLMs in the future.' Interestingly, this finding is also consistent with those of previous human studies indicating the representational transfer. Humans acquire object-shape knowledge through both visual and tactile experiences, with seeing and touching objects activating the same regions in human brains. The researchers pointed out that – as in humans – multimodal LLMs may use multiple types of input to merge or transfer representations embedded in a continuous, high-dimensional space. Prof. Li added, 'The smooth, continuous structure of embedding space in LLMs may underlie our observation that knowledge derived from one modality could transfer to other related modalities. This could explain why congenitally blind and normally sighted people can have similar representations in some areas. Current limits in LLMs are clear in this respect'. Ultimately, the researchers envision a future in which LLMs are equipped with grounded sensory input, for example, through humanoid robotics, allowing them to actively interpret the physical world and act accordingly. Prof. Li said, 'These advances may enable LLMs to fully capture embodied representations that mirror the complexity and richness of human cognition, and a rose in LLM's representation will then be indistinguishable from that of humans.' Hashtag: #PolyU #HumanCognition #LargeLanguageModels #LLMs #GenerativeAI The issuer is solely responsible for the content of this announcement.


Bloomberg
16-05-2025
- Science
- Bloomberg
AI's Most Promising Alien Hunters
Are we alone in the universe? Harvard Professor Avi Loeb says he doesn't think so. He and his team have set up the Galileo Project, aiming to bring a more rigorous approach to the study of unidentified aerial phenomena, or UAP. Using advanced technology such as high-resolution cameras and spectrographs to capture and analyze data on UAP, they hope to better understand the universe around us. (Source: Bloomberg)
Yahoo
09-05-2025
- Science
- Yahoo
Italian physicists explain how to avoid lumps in cheesy pasta sauce
How do you mix cheese and hot water without making it lumpy? This is the question for anyone who has ever tried to make the popular Italian pasta dish Cacio e Pepe, which consists of pasta, the Italian hard cheese Pecorino and pepper. Physicists have now taken on the challenge of solving this complex culinary puzzle and sharing it with pasta enthusiasts around the world. In the journal Physics of Fluids, scientists from the Max Planck Institute for the Physics of Complex Systems in Dresden, the University of Padua and other institutions report their findings – and provided what they consider to be a "foolproof recipe." Normally, fatty substances like cheese do not mix well with water, which is why starch is an important binding agent. Through tests, the research team discovered that 2-3% starch relative to the amount of cheese is optimal for a creamy, uniform sauce. With less than 1%, the risk of lumps is too high, while more than 4% makes the sauce stiff and unappetising. Heat is also crucial, as the sauce cannot tolerate much of it. Excessive temperatures destroy the proteins in the cheese, causing it to form lumps – a process the researchers refer to as the undesirable "mozzarella phase." That's why the water should be cooled slightly before mixed it with the cheese, the scientists say. "A true Italian grandmother or a skilled home chef from Rome would never need a scientific recipe for cacio e pepe," the study states. "For everyone else, this guide offers a practical way to master the dish." For those attempting the recipe, the researchers recommend preparing a starch solution – ideally with potato or corn starch – rather than relying on pasta water, where the starch content is unknown. Dissolve four grams of starch in 40 grams of water and heat it until it reaches a gel-like consistency. To this gel, add another 80 grams of water to cool the mixture. Only then should the Pecorino (160 grams in this example) be stirred into the starch solution until a homogeneous consistency is achieved. Finally, warm the sauce to serving temperature. Add pepper, mix in the pasta, and the dish is ready. The researchers had not only scientific curiosity but also a personal interest in the project. "We are Italians living abroad. We often have dinner together and enjoy traditional cooking," co-author Ivan Di Terlizzi from the Max Planck Institute in Dresden is quoted as saying in a statement by the American Institute of Physics. Cacio e Pepe, he said, seemed like an interesting dish from a physics perspective. "And of course, there was the practical aim to avoid wasting good pecorino."