Latest news with #TWA7b
Yahoo
04-07-2025
- Science
- Yahoo
Exoplanet Recently Discovered by James Webb Space Telescope
Exoplanet Recently Discovered by James Webb Space Telescope originally appeared on L.A. Mag. On Wednesday, June 25th, it was announced in Nature that the James Webb Space Telescope- the most powerful telescope according to NASA- recently detected an infrared light source that they believe is a previously unknown exoplanet. These observations were taken as part of the Webb observing program 3662. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).The observed object, which has been named TWA 7b, orbits a red dwarf star about 34 light years away known as TWA 7 or CE Antilae. Its mass is about 100 times the size of Earth, similar to Saturn. According to an article on the James Webb Discovery website, "The planet's surface temperature, estimated at 120°F (47°C), makes it one of the coldest exoplanets ever directly imaged, a testament to JWST's sensitivity to faint infrared emissions." Such temperatures suggest the exoplanet could potentially sustain detection took place within one of the three debris rings using MIRI's coronagraph. According to astronomers, if confirmed, this would be the first time the James Webb Telescope caught a direct image that resulted in the discovery of a planet. It is also the lowest-mass exoplanet outside the solar system to be detected using direct imaging. Anne-Marie Lagrange, a researcher at the Observatoire de Paris-PSL and Université Grenoble Alpes in France and lead author of the paper, said in an article on NASA's website, "Our observations reveal a strong candidate for a planet shaping the structure of the TWA 7 debris disk, and its position is exactly where we expected to find a planet of this mass."'This observatory enables us to capture images of planets with masses similar to those in the solar system, which represents an exciting step forward in our understanding of planetary systems, including our own,' said co-author Mathilde Malin of Johns Hopkins University and the Space Telescope Science Institute in Baltimore in the same discovery of TWA 7b provides researchers with an opportunity to examine planet formation further. According to the same article by NASA, "Ongoing and future observations will aim to better constrain the properties of the candidate, verify its planetary status, and deepen our understanding of planet formation and disk evolution in young systems."To learn more about Webb, visit This story was originally reported by L.A. Mag on Jul 3, 2025, where it first appeared.


Yomiuri Shimbun
04-07-2025
- Science
- Yomiuri Shimbun
TWA 7b: James Webb Space Telescope Discovers Its 1st Exoplanet
PARIS (AFP-Jiji) — The James Webb Space Telescope has discovered its first exoplanet, astronomers said on June 25, capturing rare direct images of the relatively small world in the Earth's galactic backyard. The telescope, which can see farther into the universe than anything before it, has turbocharged the search for planets beyond the Solar System since coming online in 2022. Until now, however, its deep gaze has mostly been used to probe already known exoplanets — to find out key information such as the atmospheric composition — rather than tracking down new worlds. The discovery of exoplanet TWA 7b, revealed in a study in the journal Nature, 'represents a first for the telescope,' France's CNRS research center said in a statement. The large majority of the nearly 6,000 exoplanets found so far have been identified from the light they blot out when they pass in front of their star, rather than from direct images of the planet. Webb 'has spent an enormous amount of time observing planets that have never been directly imaged,' lead study author Anne-Marie Lagrange of the Paris Observatory told AFP. 'Blinded by light' Capturing direct images of faraway planets is difficult because they are 'very faint' due to a lack of heat, Lagrange said. Even worse, she added, 'we're blinded by the light of the star they orbit.' But Webb has a way to get around the problem. An attachment to Webb's MIRI instrument called a coronagraph masks the star, creating an effect similar to a solar eclipse. The telescope's infrared vision can then peer through and spot the planet. Astronomers pointed Webb at the star TWA 7, which is around a hundred light years from Earth — relatively nearby in the universe. The star, which was first spotted by the Hubble space telescope in 1999, was thought to be a promising target for two reasons. It is just 6.4 million years old — a baby compared to the Sun's 4.5 billion years — and still surrounded by a massive disc of gas and dust where planets are thought to form. And from the direction of Earth, the disc is seen from above, giving a good view of its rings. The three rings around the star, which stretch more than 100 times the distance separating the Sun and Earth, had previously been spotted by the Very Large Telescope in Chile. But inside an otherwise empty section of the second ring, the Webb telescope detected something particularly bright. Astronomers ruled out that the light was coming from an object at the edge of the Solar System, or from a distant galaxy behind the star. That could mean only that the light source was a relatively small and cold planet, with a mass at least 10 times lighter than any other exoplanet directly imaged so far, according to the study. Hunt for smaller worlds The researchers estimated that the planet's mass was similar to that of Saturn, a gas giant that weighs only a third of Jupiter, the biggest planet in the Solar System. Webb has increased the ability to detect exoplanets via direct images by a factor of 10, Lagrange said. That is important because smaller, rocky planets similar to Earth or Mars are the ultimate target in the search for habitable worlds outside of the Solar System. Lagrange said she would be delighted to discover 'Earth-like planets' one day. But she said astronomers needed to study all kinds of planets — and to understand how planetary systems form — to know whether the life-hosting Solar System is unique. In the future, astronomers expect the Webb telescope will be able to spot planets even smaller than TWA 7b. But directly capturing images of faraway worlds similar to Earth will require even more telescopic power, such as from the Extremely Large Telescope that is scheduled to come online in Chile in 2028.
Yahoo
03-07-2025
- Science
- Yahoo
NASA detects new planet with temperatures that suggest habitable conditions
The James Webb telescope has made another stunning discovery -- this time of a massive planet that could potentially sustain life, according to multiple space agencies. Astronomers have captured "compelling evidence" of a planet with a mass about 100 times the size of Earth orbiting a young, red dwarf star 34 light-years away called TWA 7 or CE Antilae. MORE: Rare exoplanet discovered in outskirts of the Milky Way The planet, named TWA 7b, was detected by the James Webb Space Telescope, the most powerful telescope ever put into space, according to NASA. An initial analysis suggests the object could be a young, cold planet with a temperature near 120 degrees Fahrenheit, NASA said. Life can grow and reproduce starting at about 5 degrees Fahrenheit and as high as 251 degrees Fahrenheit, scientists say. MORE: Could our solar system have 9 planets after all? Astronomers may have confirmed possible existence. An international team of astronomers noticed a faint infrared source in a disk of debris surrounding the star, a distance about 50 times the space between Earth and the Sun, NASA said. They then used the telescope's mid-infrared instrument to suppress the bright glare of the host star to reveal the faint objects nearby, a method called high-contrast imaging that allows astronomers to directly detect planets that would otherwise be lost in the "overwhelming" light. If confirmed, this would be the first time the James Webb telescope captured a direct image that led to the discovery of a planet, rather than gravitational lensing -- a technique based on Albert Einstein's theory of general relativity, according to astronomers. The detection would match the expected position of a planet and explain key features of planets seen in the debris disk, according to the space agency. The source of the infrared light is located within three dust rings observed surrounding TWA 7. MORE: HExoplanet discovered in 2020 has the coldest temperatures ever measured, scientists say The debris disk surrounding TWA 7 is one of the youngest debris disks known to date, according to a paper published last week in Nature. "Our observations reveal a strong candidate for a planet shaping the structure of the TWA 7 debris disk, and its position is exactly where we expected to find a planet of this mass," Anne-Marie Lagrange, a researcher at the Observatoire de Paris-PSL and Université Grenoble Alpes in France and lead author of the paper, said in a statement. The discovery is an "exciting step forward in our understanding of planetary systems," said co-author Mathilde Malin, an assistant research associate of Johns Hopkins University and the Space Telescope Science Institute in Baltimore, in a statement. The finding highlights the Webb telescope's ability to explore previously unseen low-mass planets around nearby stars, according to NASA.
Yahoo
02-07-2025
- Science
- Yahoo
NASA detects new planet with temperatures that suggest habitable conditions
The James Webb telescope has made another stunning discovery -- this time of a massive planet that could potentially sustain life, according to multiple space agencies. Astronomers have captured "compelling evidence" of a planet with a mass about 100 times the size of Earth orbiting a young, red dwarf star 34 light-years away called TWA 7 or CE Antilae. MORE: Rare exoplanet discovered in outskirts of the Milky Way The planet, named TWA 7b, was detected by the James Webb Space Telescope, the most powerful telescope ever put into space, according to NASA. An initial analysis suggests the object could be a young, cold planet with a temperature near 120 degrees Fahrenheit, NASA said. Life can grow and reproduce starting at about 5 degrees Fahrenheit and as high as 251 degrees Fahrenheit, scientists say. MORE: Could our solar system have 9 planets after all? Astronomers may have confirmed possible existence. An international team of astronomers noticed a faint infrared source in a disk of debris surrounding the star, a distance about 50 times the space between Earth and the Sun, NASA said. They then used the telescope's mid-infrared instrument to suppress the bright glare of the host star to reveal the faint objects nearby, a method called high-contrast imaging that allows astronomers to directly detect planets that would otherwise be lost in the "overwhelming" light. If confirmed, this would be the first time the James Webb telescope captured a direct image that led to the discovery of a planet, rather than gravitational lensing -- a technique based on Albert Einstein's theory of general relativity, according to astronomers. The detection would match the expected position of a planet and explain key features of planets seen in the debris disk, according to the space agency. The source of the infrared light is located within three dust rings observed surrounding TWA 7. MORE: HExoplanet discovered in 2020 has the coldest temperatures ever measured, scientists say The debris disk surrounding TWA 7 is one of the youngest debris disks known to date, according to a paper published last week in Nature. "Our observations reveal a strong candidate for a planet shaping the structure of the TWA 7 debris disk, and its position is exactly where we expected to find a planet of this mass," Anne-Marie Lagrange, a researcher at the Observatoire de Paris-PSL and Université Grenoble Alpes in France and lead author of the paper, said in a statement. The discovery is an "exciting step forward in our understanding of planetary systems," said co-author Mathilde Malin, an assistant research associate of Johns Hopkins University and the Space Telescope Science Institute in Baltimore, in a statement. The finding highlights the Webb telescope's ability to explore previously unseen low-mass planets around nearby stars, according to NASA.

02-07-2025
- Science
NASA detects new planet with temperatures that suggest habitable conditions
The James Webb telescope has made another stunning discovery -- this time of a massive planet that could potentially sustain life, according to multiple space agencies. Astronomers have captured "compelling evidence" of a planet with a mass about 100 times the size of Earth orbiting a young, red dwarf star 34 light-years away called TWA 7 or CE Antilae. The planet, named TWA 7b, was detected by the James Webb Space Telescope, the most powerful telescope ever put into space, according to NASA. An initial analysis suggests the object could be a young, cold planet with a temperature near 120 degrees Fahrenheit, NASA said. Life can grow and reproduce starting at about 5 degrees Fahrenheit and as high as 251 degrees Fahrenheit, scientists say. An international team of astronomers noticed a faint infrared source in a disk of debris surrounding the star, a distance about 50 times the space between Earth and the Sun, NASA said. They then used the telescope's mid-infrared instrument to suppress the bright glare of the host star to reveal the faint objects nearby, a method called high-contrast imaging that allows astronomers to directly detect planets that would otherwise be lost in the "overwhelming" light. If confirmed, this would be the first time the James Webb telescope captured a direct image that led to the discovery of a planet, rather than gravitational lensing -- a technique based on Albert Einstein's theory of general relativity, according to astronomers. The detection would match the expected position of a planet and explain key features of planets seen in the debris disk, according to the space agency. The source of the infrared light is located within three dust rings observed surrounding TWA 7. The debris disk surrounding TWA 7 is one of the youngest debris disks known to date, according to a paper published last week in Nature. "Our observations reveal a strong candidate for a planet shaping the structure of the TWA 7 debris disk, and its position is exactly where we expected to find a planet of this mass," Anne-Marie Lagrange, a researcher at the Observatoire de Paris-PSL and Université Grenoble Alpes in France and lead author of the paper, said in a statement. The discovery is an "exciting step forward in our understanding of planetary systems," said co-author Mathilde Malin, an assistant research associate of Johns Hopkins University and the Space Telescope Science Institute in Baltimore, in a statement.