a day ago
Scientists introduce scalable method to efficiently squeeze hydrogen from seawater
Scientists have introduced a new method that can efficiently squeeze hydrogen from seawater. Developed by researchers at the University of Sharjah, the method offers a clean way to get hydrogen directly from seawater without the need for desalination. The method can be effective for arid coastal microenvironment-engineered, multi-layered electrode resists the corrosion and performance degradation typically caused by chloride ions in traditional seawater electrolysis.
In their experiment, researchers successfully extracted hydrogen without removing the mineral salts found in seawater or adding any chemicals.
Published in the journal Small, the study utilizes the strategic integration of carbonate (CO₃2⁻) Lewis base sites anchored on a Cobalt layered double hydroxides (Co LDH) embedded within a NiBOx nanostructure supported by a Ni(OH)₂/NF research team revealed that incorporating boron into the Ni-OOH matrix forms a protective metaborate film, preventing metal dissolution and non-conductive oxide formation, thereby enhancing current collector corrosion resistance in saline seawater conditions."We developed a novel, multi-layered electrode that can extract hydrogen directly from seawater efficiently and sustainably. Traditional methods face a host of problems, mainly corrosion and performance degradation caused by chloride ions in seawater," said Dr. Tanveer Ul Haq, Assistant Professor in the Department of Chemistry at the University of Sharjah and the study's lead author.
The custom-built electrode overcomes multiple challenges by creating a protective and reactive microenvironment that boosts performance while resisting researchers' new advanced anode design achieves an industrially viable current density of 1.0 A cm⁻2 at 1.65 V under standard conditions, marking a significant step toward scalable, desalination-free hydrogen production directly from seawater."The CO₃2⁻ Lewis base covalently functionalized on Co-active sites, establishes a dynamic interaction that continuously splits water molecules while sequestering H⁺ ions, generating a localized acidic microenvironment," said researchers in the study."This acidification enhances OER kinetics and protects against chloride attack and precipitate formation, addressing key stability and efficiency barriers in direct seawater electrolysis."
By eliminating the need for freshwater and energy-intensive desalination, the technology could enable solar-powered hydrogen farms in arid coastal areas such as those in the UAE, where seawater and sunlight are plentiful but freshwater is scarce. If scaled up properly, the system could make it easier to produce large quantities of 'green hydrogen', produced through electrolysis with using renewable energy, reported Engineering & Technology.
Yousef Haik, Professor of Mechanical and Nuclear Engineering at the University of Sharjah and the study's corresponding author, stated that the new system generates hydrogen at industrially relevant rates—1 ampere per square centimeter—with low energy input.
This could revolutionize how we think about hydrogen production in coastal regions, especially in arid countries like the UAE, where freshwater is limited but sunlight and seawater are abundant. The technology's strength lies in the electrode's advanced, multilayered structure, which not only withstands harsh seawater conditions but thrives in them, reported SciTechDaily.