21-05-2025
Astronomers Spot a Strangely Perfect Sphere Thousands of Light-Years Away
Here's what you'll learn in this story.
Scientists using radio wavelength data from the Australian Square Kilometre Array Pathfinder (ASKAP) spotted a strangely symmetrical sphere located thousands of light-years away.
The 'sphere' is likely the result of a Type 1a supernova shockwave, though astronomers aren't sure exactly how far away the this supernova remnant is from Earth—either 7,175 light-years or 25,114 light-years.
Regardless of this distance discrepancy, the near-perfect spherical nature of the remnant gives scientists the opportunity to learn more about one of the most energetic events in the universe.
The amount humanity has learned about the cosmos in just the past century is truly staggering. A little over a century ago, American astronomer Edwin Hubble announced to the world that the Milky Way was actually just one galaxy among many in the known universe. Now, we know the universe contains hundreds of billions—if not trillions—of galaxies, and engineers have developed space-based telescopes capable of spying some of the oldest ones in existence.
Of course, that doesn't mean mysteries don't remain—both large and small. On the big side of the equation, dark matter and dark energy remain perplexing conundrums, but science's array of detectors often posit smaller puzzles. One such mystery is the curious case of supernova remnant (SNR) G305.4–2.2, nicknamed Teleios. A Greek word meaning 'perfect,' Telelios references the near-perfect symmetry of what appears to be a sphere of ejected star material—aka a supernova remnant.
Initially captured by the Australian Square Kilometre Array Pathfinder (ASKAP), Teleios's origin isn't the real head-scratcher. Instead, scientists like Miroslav Filipović, an astrophysicist from Western Sydney University in Australia, are more perplexed by its near-perfect shape, an extreme rarity for such an SNR throughout the universe.
'The supernova remnant will be deformed by its environment over time,' Filipovic, along with a cadre of other Australian astrophysicists, wrote in an article on The Conversation in March. 'If one side of the explosion slams into an interstellar cloud, we'll see a squashed shape. So, a near-perfect circle in a messy universe is a special find.'
In an analysis submitted to the Publications of the Astronomical Society of Australia and published on the preprint server arXiv, Filipović—the lead author of the study—and his team discovered that Teleios only glows faintly in radio wavelengths. Armed with this information, the astronomers could reasonably deduce that Telelios originated from a Type 1a supernova, which typically form from binary star systems where one of the stars is a white dwarf. Because these types of supernovae are consistent in their peak brightness, astronomers have used them for decades to measure cosmic distances (with none other than the Hubble telescope among others).
However, in this instance, astronomers haven't been able to quite nail down Teleios's exact distance, but they've drawn up three best guesses. If it is the results of a Type 1a supernova, then its likely that this symmetrical mystery is either 7,175 light-years or 25,114 light-years away, making the sphere either 46 light-years across or 157 light-years across, respectively. This distance also reflects its age, meaning it's either less than 1,000 years old or greater than 10,000 years old. So, lots of room for further exploration.
The study also posits the idea that it could be a Type 1ax supernova where the supernova instead leaves behind a 'zombie star' remnant, according to Live Science. However, in this scenario, the supernova would be only 3,262 light-years away and around 11 light-years across.
Whatever the scenario, Teleios—which is just one of the many interesting things discovered by ASKAP—still presents a remarkable opportunity to learn more about supernovae.
'This presents us with an opportunity to make inferences about the initial supernova explosion, providing rare insight into one of the most energetic events in the universe,' Filipovic co-authors in The Conversation.
In 100 years from now, who knows what the universe might look like to our 22nd-century enlightened minds.
You Might Also Like
The Do's and Don'ts of Using Painter's Tape
The Best Portable BBQ Grills for Cooking Anywhere
Can a Smart Watch Prolong Your Life?