logo
#

Latest news with #chemosyntheticlife

A 'groundbreaking' ocean discovery may be a clue about extraterrestrial life
A 'groundbreaking' ocean discovery may be a clue about extraterrestrial life

Yahoo

time3 days ago

  • Science
  • Yahoo

A 'groundbreaking' ocean discovery may be a clue about extraterrestrial life

Strange animals that get their energy from chemical reactions instead of the sun have been discovered at the bottom of ocean trenches up to 31,000 feet deep in the northwest Pacific between Russia and Alaska, a new study reports. Scientists say the findings shed new light on the potential for life to exist in extreme environments using the chemical compound methane instead of sunlight. The animals were discovered by researchers using a human-crewed submersible vehicle. "What makes our discovery groundbreaking is not just its greater depth – it's the astonishing abundance and diversity of chemosynthetic life we observed," said marine geochemist Mengran Du of the Institute of Deep-sea Science and Engineering, part of the Chinese Academy of Sciences, one of the authors of the research published July 30 in the peer-reviewed British journal Nature. The authors suggest that similar communities may be more widespread than previously thought, and their findings challenge views about how the ecosystems might be supported. "Even though living in the harshest environment, these life forms found their way in surviving and thriving," Du said. To some, the findings prompt questions about the potential for finding life on other planets. Marine geologist and study co-author Xiaotong Peng said "we suggest that similar chemosynthetic communities may also exist in extraterrestrial oceans, as chemical species like methane and hydrogen are common there." Could this kind of life be found on other planets? Du told USA TODAY that similar chemosynthetic life forms could exist on Jupiter's moon Europa, or even Saturn's moon Enceladus. Europa might be the most likely: "Europa's ocean is considered one of the most promising places in the solar system to look for life beyond Earth," according to NASA. "There is very strong evidence that the ingredients for life exist on Europa," said planetary scientist Bonnie Buratti of NASA's Jet Propulsion Laboratory, who was not part of this study. At the bottom of Europa's ocean, where the water meets the rocky mantle, there may be thermal vents where heat releases chemical energy. "They may be similar to thermal vents in the deep oceans of the Earth where primitive life exists and where life may have originated on the Earth," Buratti said. Europa Clipper will tell us more NASA hopes the Europa Clipper spacecraft will help "determine whether (Europa's) subsurface ocean harbors a habitable environment," Buratti said. She added that the current thinking is that life arose in the depth's of the Earth's oceans, so seeking a similar environment on Europa is the first step to answering questions about undersea life on other planets or moons. "Europa is the first ocean world to be studied in detail. Other bodies in the Solar System, such as Titan, Enceladus, possibly Ganymede and even Pluto, as well as many exoplanets or exomoons could also harbor habitable environments similar to those on Earth," she told USA TODAY. "We'll know much more after we get some results from Europa Clipper, starting in 2030." More: NASA's Europa Clipper launches in search for 'ingredients of life' on Jupiter's icy moon On Earth, amazing deep sea tube worms and clams Researchers found animal communities – dominated by tube worms and clams – during a series of dives to the bottom of the Kuril-Kamchatka and Aleutian trenches. The ecosystems were discovered at depths greater than the height of Mount Everest, Earth's tallest peak. The deepest one was 31,276 feet below the ocean surface in the Kuril-Kamchatka Trench. This was almost 25% deeper than such animals had previously been documented anywhere on Earth. This environment harbors "the deepest and the most extensive chemosynthetic communities known to exist on our planet," said marine geologist and study co-author Xiaotong Peng. The study reported that organisms such as these that live in extreme environments need to adapt to produce energy in different ways. Known as "chemosynthesis-based communities," they derive their energy from chemical reactions rather than from photosynthesis, which requires sunlight. Such communities can be found in deep sea habitats where chemicals such as hydrogen sulfide and methane seep from the sea floor, according to the study. Contributing: Reuters This article originally appeared on USA TODAY: A clue about extraterrestrial life may be hiding deep in the ocean Solve the daily Crossword

Scientists say they cruised the ocean in a deep-sea submersible and came across an undiscovered ecosystem
Scientists say they cruised the ocean in a deep-sea submersible and came across an undiscovered ecosystem

CTV News

time11-08-2025

  • Science
  • CTV News

Scientists say they cruised the ocean in a deep-sea submersible and came across an undiscovered ecosystem

Scientists exploring the hadal zone between Russia and Alaska say they discovered the deepest known ecosystem, capable of sustaining life without sunlight. (Institute of Deep-sea Science and Engineering/Chinese Academy of Sciences (IDSSE, CAS) via CNN Newsource) Marine researchers exploring extreme depths say they have discovered an astonishing deep-sea ecosystem of chemosynthetic life that's fueled by gases escaping from fractures in the ocean bed. The expedition revealed methane-producing microbes and marine invertebrates that make their home in unforgiving conditions where the sun's rays don't reach, according to a new study. Geochemist Mengran Du had 30 minutes left in her submersible mission when she decided to explore one last stretch of the trenches that lie between Russia and Alaska, about 5,800 to 9,500 metres (19,000 to 30,000 feet) below the ocean's surface in what's called the hadal zone. She said she began to notice 'amazing creatures,' including various species of clam and tube worm that had never been recorded so deep below the surface. What Du stumbled upon was a roughly 2,500-kilometre (1,550-mile) stretch of what her team says is the deepest known ecosystem of organisms that use the chemical compound methane instead of sunlight to survive. Du is a co-lead author of a study describing the findings that was published July 30 in the journal Nature. The hadal zone is primarily comprised of oceanic trenches and troughs — some of the deepest and least explored environments on Earth. At these depths, 'life needs tricks to survive and thrive there,' explained Du, a professor and researcher at the Institute of Deep-sea Science and Engineering at the Chinese Academy of Sciences. One of those tricks lies in bacteria that have evolved to live inside the clams and tube worms, according to the National Oceanic Atmospheric Administration. The bacteria convert methane and hydrogen sulfide from cold seeps — cracks in the seafloor that leak these compounds as fluids — into energy and food that the host animal can use, allowing organisms to live in zero-sunlight conditions. The discovery suggests that these communities might also exist in other hadal trenches, Du said, opening opportunities for further research into just how deep these animals can survive. Deepest chemosynthetic ecosystems Clusters of tube worms extend red tentacles, with small mollusks (white spots) near the tentacles, at 9,320 metres (30,580 feet). (Institute of Deep-sea Science and Engineering/Chinese Academy of Sciences (IDSSE, CAS) via CNN Newsource) Deep-sea ecosystem fueled by methane After analyzing sediment samples collected from the expedition, Du and her team said they detected high concentrations of methane. The find was surprising, since deep-sea sediments normally contain very low concentrations of the compound. The scientists hypothesized that microbes living in the ecosystem convert organic matter in the sediments into carbon dioxide, and carbon dioxide into methane — something the researchers didn't know microbes could do. The bacteria living inside clam and tube worm species then use this methane for chemosynthesis to survive, Du said. There was another revelation, too. Scientists previously thought chemosynthetic communities relied on organic matter — such as from dead organisms and drifting particles from living species — that fell from the ocean's surface to the floor. But this discovery, Du said, reveals that these methane-producing microbes are also creating a local source of organic molecules that larger organisms such as clams can use for food and energy. Methane, as a carbon-containing compound, is part of the carbon cycle. So, this discovery also indicates that the hadal trenches play a more important role in that cycle than previously thought, Du explained. Scientists have long understood that methane is stored as compressed fluid deep in the subduction zone, where tectonic plates meet below the ocean floor, which ultimately releases through 'cold seeps' at the bottom of hadal trenches. Now that Du's team has discovered chemosynthesis at such depths, they hypothesize that the hadal trenches act not only as reservoirs, but also as recycling centers for methane. This suggests, Du said, that 'a large amount of the carbon stays in the sediments and (is) recycled by the microorganisms.' Indeed, scientists have recently estimated that hadal zone sediments could sequester as much as 70 times more organic carbon than the surrounding seafloor. These so-called carbon sinks are crucial for our planet given that methane and carbon dioxide are two major greenhouse gases driving global warming in the atmosphere. Deepest chemosynthetic ecosystems Scientists observed previously unknown species, including clams, in the hadal trenches. (Institute of Deep-sea Science and Engineering/Chinese Academy of Sciences (IDSSE, CAS) via CNN Newsource) Further research into deep-sea ecosystems Chemosynthetic communities themselves are not new to science. Previous research has hinted that it was possible for them to thrive at such great depths, said Johanna Weston, a deep ocean ecologist at Woods Hole Oceanographic Institute in Massachusetts who was not involved with the new study. She was impressed, however, with the extent of the recent discovery, she told CNN. In an age of widespread biodiversity loss, the finding highlights the importance of new technology that can withstand high pressure in deep-sea environments to document undiscovered organisms, said Weston, who is part of a team actively exploring the deep-sea offshore from Argentina. Even though the hadal trenches are remote, they aren't completely isolated, she added. Weston and her colleagues discovered a newfound species in 2020 in the Mariana Trench named Eurythenes plasticus for the microplastic fibers detected in its gut. And near Puerto Rico, Weston newly identified an isopod that exclusively eats sargassum, a type of abundant seaweed in the Atlantic Ocean that can sink to the ocean floor in just 40 hours. 'The deep ocean is very connected to what's happening on the surface,' she said. Research on deep-sea ecosystems is only a few decades old, and the technology for new discoveries is improving. But Du added that it's important for different countries and scientific disciplines to collaborate on future efforts. The Global Hadal Exploration Program, which is co-led by UNESCO and the Chinese Academy of Sciences, aims to do just that by creating a network of deep-sea scientists from multiple countries. Du hopes she and her team can learn more about hadal trench ecosystems by studying how these species have adapted to such extreme depths. 'Even though we see the hadal trench as a very extreme environment, the most inhospitable environment … (chemosynthetic organisms) can live happily there,' Du said. Marlowe Starling, CNN

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store