logo
#

Latest news with #extremelife

A 'groundbreaking' ocean discovery may be a clue about extraterrestrial life
A 'groundbreaking' ocean discovery may be a clue about extraterrestrial life

Yahoo

timea day ago

  • Science
  • Yahoo

A 'groundbreaking' ocean discovery may be a clue about extraterrestrial life

Strange animals that get their energy from chemical reactions instead of the sun have been discovered at the bottom of ocean trenches up to 31,000 feet deep in the northwest Pacific between Russia and Alaska, a new study reports. Scientists say the findings shed new light on the potential for life to exist in extreme environments using the chemical compound methane instead of sunlight. The animals were discovered by researchers using a human-crewed submersible vehicle. "What makes our discovery groundbreaking is not just its greater depth – it's the astonishing abundance and diversity of chemosynthetic life we observed," said marine geochemist Mengran Du of the Institute of Deep-sea Science and Engineering, part of the Chinese Academy of Sciences, one of the authors of the research published July 30 in the peer-reviewed British journal Nature. The authors suggest that similar communities may be more widespread than previously thought, and their findings challenge views about how the ecosystems might be supported. "Even though living in the harshest environment, these life forms found their way in surviving and thriving," Du said. To some, the findings prompt questions about the potential for finding life on other planets. Marine geologist and study co-author Xiaotong Peng said "we suggest that similar chemosynthetic communities may also exist in extraterrestrial oceans, as chemical species like methane and hydrogen are common there." Could this kind of life be found on other planets? Du told USA TODAY that similar chemosynthetic life forms could exist on Jupiter's moon Europa, or even Saturn's moon Enceladus. Europa might be the most likely: "Europa's ocean is considered one of the most promising places in the solar system to look for life beyond Earth," according to NASA. "There is very strong evidence that the ingredients for life exist on Europa," said planetary scientist Bonnie Buratti of NASA's Jet Propulsion Laboratory, who was not part of this study. At the bottom of Europa's ocean, where the water meets the rocky mantle, there may be thermal vents where heat releases chemical energy. "They may be similar to thermal vents in the deep oceans of the Earth where primitive life exists and where life may have originated on the Earth," Buratti said. Europa Clipper will tell us more NASA hopes the Europa Clipper spacecraft will help "determine whether (Europa's) subsurface ocean harbors a habitable environment," Buratti said. She added that the current thinking is that life arose in the depth's of the Earth's oceans, so seeking a similar environment on Europa is the first step to answering questions about undersea life on other planets or moons. "Europa is the first ocean world to be studied in detail. Other bodies in the Solar System, such as Titan, Enceladus, possibly Ganymede and even Pluto, as well as many exoplanets or exomoons could also harbor habitable environments similar to those on Earth," she told USA TODAY. "We'll know much more after we get some results from Europa Clipper, starting in 2030." More: NASA's Europa Clipper launches in search for 'ingredients of life' on Jupiter's icy moon On Earth, amazing deep sea tube worms and clams Researchers found animal communities – dominated by tube worms and clams – during a series of dives to the bottom of the Kuril-Kamchatka and Aleutian trenches. The ecosystems were discovered at depths greater than the height of Mount Everest, Earth's tallest peak. The deepest one was 31,276 feet below the ocean surface in the Kuril-Kamchatka Trench. This was almost 25% deeper than such animals had previously been documented anywhere on Earth. This environment harbors "the deepest and the most extensive chemosynthetic communities known to exist on our planet," said marine geologist and study co-author Xiaotong Peng. The study reported that organisms such as these that live in extreme environments need to adapt to produce energy in different ways. Known as "chemosynthesis-based communities," they derive their energy from chemical reactions rather than from photosynthesis, which requires sunlight. Such communities can be found in deep sea habitats where chemicals such as hydrogen sulfide and methane seep from the sea floor, according to the study. Contributing: Reuters This article originally appeared on USA TODAY: A clue about extraterrestrial life may be hiding deep in the ocean Solve the daily Crossword

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store