Latest news with #quasar


Sustainability Times
6 days ago
- Science
- Sustainability Times
Deep-Space Water War: The 140-Trillion-Ocean Discovery That's Fueling Global Tensions, Wild Conspiracies, and Scientific Revolt
IN A NUTSHELL 💧 Astronomers discovered a colossal water reservoir in space, estimated to be 100 trillion times the volume of Earth's oceans, surrounding the quasar APM 08279+5255 . . 🌌 The quasar features a supermassive black hole at its center, with a mass equivalent to 20 billion suns, emitting energy comparable to 1 trillion suns. at its center, with a mass equivalent to 20 billion suns, emitting energy comparable to 1 trillion suns. 🔭 Advanced technology, including the Z-Spec spectrograph and other observatories, played a critical role in identifying and confirming the vast amount of water vapor. ✨ This discovery provides new insights into early quasar environments and the evolution of supermassive black holes, highlighting the universe's complexity and potential for further exploration. Space exploration continuously reveals awe-inspiring discoveries that expand our understanding of the universe. One such revelation is the detection of a colossal water reservoir in the cosmos, a find that transcends our previous comprehension of celestial bodies. This extraordinary water mass, estimated to be 100 trillion times the volume of Earth's oceans, orbits the quasar APM 08279+5255, located 12 billion light-years away. This discovery not only underscores the universe's vastness but also opens new avenues for understanding quasar environments and the formation of black holes. A Glance into the Cosmic Universe: Quasar APM 08279+5255's Massive Water Cloud APM 08279+5255 is no ordinary quasar. At its heart lies a supermassive black hole weighing as much as 20 billion suns, making it one of the most powerful known entities in the universe. This black hole is enveloped by an immense cloud of water vapor, spreading over several hundred light-years. The energy produced by this quasar equals that of 1 trillion suns, fueling the surrounding gas, dust, and matter spiraling into the black hole. Among the most remarkable aspects of this discovery is the sheer volume of water vapor. In stark contrast, the Milky Way contains significantly less gaseous water, most of which remains frozen. The substantial concentration of water in APM 08279+5255 suggests an environment capable of heating the encircling gas to emit intense X-rays and Infrared radiation, creating a hot and dense atmosphere. This phenomenon hints at the dynamic processes at play in quasars, offering a glimpse into the universe's complexity. 'We Never Thought It Could Be This Huge': Astronomers Stunned by 10-Milky-Way-Sized Gas Thread Connecting Distant Galaxies Discovery of Water Vapor Provides New Insights into Early Quasar Environments and the Growth of Black Holes The detection of water vapor in this distant quasar not only highlights the quasar itself but also the atmospheric conditions surrounding such astronomical phenomena. Water, often considered a minor molecule in space, proves invaluable in assessing the thermodynamic properties like temperature and pressure of gases. Despite the gas temperature near the quasar being relatively low, at about minus 63 degrees Fahrenheit, it is significantly warmer and denser than typical galactic gases found in the Milky Way. This finding holds significance as it aligns with the universe's earliest epochs, captured at a redshift of z=3.9, when the quasar was merely 1.6 billion years old. Understanding these early conditions helps scientists comprehend the evolution of supermassive black holes. In APM 08279+5255's case, the potential for the black hole to grow up to six times its current size due to available gas is conceivable. Yet, whether the black hole will consume all this gas, or if some will transform into stars or disperse into space, remains uncertain. 'It's a Crazy, Unexplainable Signal From Space': Repeating Radio Burst Every 2 Hours Baffles Scientists and Reveals New Star System Innovative Instruments Trace Water Vapor in Quasar, Paving Way for the Study of the Cosmic Dawn The discovery of this vast water reservoir is attributed to advanced millimeter and submillimeter technology. At the Caltech Submillimeter Observatory in Hawaii, researchers utilized the Z-Spec spectrograph to identify water vapor in a high-redshift quasar. Follow-up observations with the Plateau de Bure Interferometer and CARMA further confirmed both the presence and the magnitude of the water content. These innovative tools, though recently available, are pivotal in exploring the early universe and its expansion. Such technological advancements are critical for delving into the cosmic dawn, offering insights into the universe's formative stages. The large water vapor region around a quasar, driven by a supermassive black hole, showcases the universe's richness and potential for further black hole growth. With ongoing technological progress, astronomers are poised to unveil more about the universe's origins and evolution, enhancing our cosmic comprehension. For the First Time in History, Astronomers Capture the Moment a Distant Solar System Is Born in Deep Space The Impact of This Cosmic Discovery on Understanding Universe Evolution The recent discovery of the largest and most distant water reservoir in the universe provides a fresh perspective on cosmic evolution during primitive stages. This discovery highlights the vastness of the universe and the potential for more black holes to grow. As technology advances, it's increasingly likely that astronomers will uncover more about the universe's beginnings and its transformation over time. The presence of such a massive water reservoir in space challenges our understanding and invites further exploration into the early universe's mysteries. As we continue to unravel the secrets of the cosmos, this discovery stands as a testament to human curiosity and innovation. What other remarkable revelations await us in the vast expanse of space, and how will they reshape our understanding of the universe and our place within it? This article is based on verified sources and supported by editorial technologies. Did you like it? 4.6/5 (25)
Yahoo
07-06-2025
- Science
- Yahoo
The largest black hole jet ever discovered is three times bigger than the Milky Way
If you purchase an independently reviewed product or service through a link on our website, BGR may receive an affiliate commission. Astronomers have discovered a massive black hole jet that is three times bigger than the Milky Way. The jet is known as Quasar J1601+3102, and it was first spotted by astronomers using the Low Frequency Array (LOFAR). Researchers estimate that the jet spans nearly 200,000 light-years, more than twice the diameter of our own galaxy. It's the largest black hole jet we've discovered to date. What makes this particular jet so exciting for astronomers is not only its size. It's also estimated to be 1.2 billion years old. The black hole behind the quasar is believed to have flared out while our universe was still very young, a new study in The Astrophysical Letters revealed. Researchers say that Quasar J1601+3102 would have weighed as much as at least 450 million suns, even back then. Today's Top Deals Best deals: Tech, laptops, TVs, and more sales Best Ring Video Doorbell deals Memorial Day security camera deals: Reolink's unbeatable sale has prices from $29.98 The massive length and size of this black hole jet suggests that the black hole has continued to pump energy and material into the jet long after the first stars flared to life in the early universe. This discovery goes a long way in supporting current theories about the early universe and the role that black holes might have played in the universe's expansion. But discovering this type of jet has only become possible since LOFAR's creation. The system is made up of more than 50 linked stations from Poland to Ireland. The sheer size of the system allows astronomers to track not only bright knots of material, but also the lower-frequency sections of the jet, too. This has allowed researchers to uncover more data about the large black hole jet and its origins. In fact, at first, many believed the southern portion of the jet was actually unrelated, and that it would be much smaller than it is. With LOFAR, though, astronomers were able to connect the dots. Another surprising aspect of this quasar, though, is that the black hole, though large, is not nearly as massive as astronomers might have expected. In fact, it's actually quite small compared to some other quasar sources we've seen in the past. It's possible there are other quasars like this out there, too. However, uncovering them is difficult and samples have been scarce because looking back in time to the early universe makes it harder to detect these radio signals as the cosmic microwave background was much brighter in the past. Previously, astronomers have watched black holes fire off jets of material into space. We've even caught hints of runaway black holes spiraling through the galaxy. This discovery, though, will finally help further our understanding of just how black holes shape the galaxies they lie within. Don't Miss: Today's deals: Nintendo Switch games, $5 smart plugs, $150 Vizio soundbar, $100 Beats Pill speaker, more More Top Deals Amazon gift card deals, offers & coupons 2025: Get $2,000+ free See the
Yahoo
24-05-2025
- Science
- Yahoo
Scientists spot high-speed galaxy collision 11 billion light-years away: 'We hence call this system the cosmic joust'
When you buy through links on our articles, Future and its syndication partners may earn a commission. Using a telescope in Chile, astronomers have captured a high-speed collision between two galaxies located more than 11 billion light-years away, getting a rare direct glimpse into how the universe's most luminous sources of energy, known as quasars, can sculpt their surroundings and influence the evolution of galaxies. The new findings describe a galactic battle between the galaxy on the right in the image above, which hosts an actively feeding black hole, a quasar, at its center, and its neighbor on the left, which is being bombarded by intense radiation that disrupts its ability to form new stars. "We hence call this system the 'cosmic joust,'" Pasquier Noterdaeme, a researcher at the Institut d'Astrophysique de Paris in France, who co-led the new study, said in a statement. Named J012555.11−012925.00, the quasar is generally so bright that it outshines its surroundings, dominating optical images as a single point of light. However, using the Atacama Large Millimeter/submillimeter Array (ALMA), a network of 66 radio dishes in the Chilean Andes working together as one giant telescope, astronomers were able to distinguish the second galaxy. The observations revealed the companion galaxy is moving toward the quasar-hosting galaxy at about 1.2 million miles per hour (2 million kilometers per hour), indicating the two are in the midst of a high-speed collision. To study how the quasar's radiation affects the companion galaxy, the researchers used the X-shooter instrument on the Very Large Telescope (VLT), also located in Chile. By analyzing the quasar's light as it passed through the other galaxy, they found the radiation blasts apart the gas in the companion galaxy, leaving behind compact cloudlets that are too small to form new stars. Related Stories: — Why do dwarf galaxies line up? 'Zippers' and 'twisters' in the early universe may solve a galactic mystery — Scientists calculate when the universe will end — it's sooner than expected — Amateur astrophotographer captures a stunning galaxy 24 million light-years from Earth (photo) "We see for the first time the effect of a quasar's radiation directly on the internal structure of the gas in an otherwise regular galaxy," Sergei Balashev, a researcher at the Ioffe Institute in Russia, who co-led the study, said in the statement. The gravitational forces at play are also pulling more gas toward the black hole, allowing it to continue feeding and powering the quasar, the study found. "These mergers are thought to bring huge amounts of gas to supermassive black holes residing in galaxy centres," said Balashev. The study was published on Wednesday (May 21) in the journal Nature.
Yahoo
23-05-2025
- Science
- Yahoo
Astronomers saw one galaxy impale another. The damage was an eye-opener.
Two extremely distant galaxies appear to be ramming into each other over and over again at speeds of over 1 million mph. The pair — dueling it out 11 billion light-years away in space — has given astronomers their first detailed look at a galaxy merger in which one impales another with intense radiation. The armed galaxy's lance is a quasar, a portmanteau for "quasi-stellar object." "We hence call this system the 'cosmic joust,'" said Pasquier Noterdaeme, one of the researchers from the Institut d'Astrophysique de Paris, in a statement. A quasar is a blindingly bright galaxy core — brighter than all of the galaxy's starlight combined, according to NASA. Through telescopes, these sometimes look like a single star in the sky, but they're actually beams of light from a feasting black hole at a galaxy's core. Scientists have suspected quasars may "turn on the lights" when two galaxies crash into each other. But finding direct proof has been challenging. Not only did the new observations show how a cosmic collision helps a quasar light up, it also revealed that the quasar can be a weapon of mass destruction, snuffing out another galaxy's ability to form new stars. These findings, published in the journal Nature, may help scientists better understand how supermassive black holes can shape the fates of other entire galaxies. SEE ALSO: Hubble spots a roaming black hole light-years from where it belongs A galaxy's quasar, right, snuffs out another galaxy's ability to form new stars in this artist's rendering. Credit: ESO / M. Kornmesser illustration When astronomer Maarten Schmidt found the first quasar in 1963, it looked like a star, though it was much too far away for that to have been the source. Scientists have since learned that quasars are relics of a much earlier time in the universe. The nearest quasars to Earth are still several hundred million light-years away, meaning they are observed now as they were hundreds of millions of years ago. That quasars aren't found closer to home is a clue they existed when the universe was much younger. But scientists seek them out for studies because they may provide insight into the evolution of the universe. Though the research team saw the collision as if it was happening now, it occurred long ago, when the universe was only 18 percent of its current age. That's possible because extremely distant light and other forms of radiation take time to reach our telescopes, meaning astronomers see their targets as they were in the past. "We hence call this system the 'cosmic joust.'" To conduct the study, an international team of astronomers used the Atacama Large Millimeter/submillimeter Array, or ALMA, and the European Southern Observatory's Very Large Telescope, both peering up at the sky from the Chilean desert. Their research supports a long-held theory: that galaxy mergers can trigger quasars, and that the energy from them can alter their surroundings in powerful ways. "Here we see for the first time the effect of a quasar's radiation directly on the internal structure of the gas in an otherwise regular galaxy," said co-author Sergei Balashev, a researcher at the Ioffe Institute in Russia, in a statement. The gas that would usually feed star-making activity within the wounded galaxy was transformed: Rather than being dispersed evenly in large loose clouds, the quasar's radiation clumped the gas in super tiny, dense pockets, rendering it useless for star births. This suggests the quasar's energy effectively sterilized the galaxy — at least wherever the radiation hit. Black holes in general are some of the most inscrutable things in the cosmos. Astronomers believe these invisible giants skulk at the center of virtually all galaxies. Falling into one is an automatic death sentence. Any cosmic stuff that wanders too close reaches a point of no return. A wide view of the two galaxies on the verge of merging, dubbed "the cosmis joust," in the distant universe. Credit: DESI Legacy Survey But scientists have observed something weird at the edge of black holes' accretion disks, the rings of rapidly spinning material around the holes: A tiny amount of the material can suddenly get rerouted. When this happens, high-energy particles get flung outward as a pair of jets, blasting in opposite directions, though astronomers haven't quite figured out how it all works. It's also still a mystery as to when exactly in cosmic history the universe started making them. The quasar didn't just affect the other galaxy. The sparring apparently allowed new reserves of fuel to flow into the galaxy hosting the quasar, bringing fresh gas within reach of the supermassive black hole powering it. As the black hole eats the material, it perpetuates the violence. "These mergers are thought to bring huge amounts of gas to supermassive black holes residing in galaxy centers," Balashev said.


Reuters
21-05-2025
- Science
- Reuters
Two galaxies seen in a 'joust' preceding a cosmic mega-merger
WASHINGTON, May 21 (Reuters) - Astronomers have observed two distant galaxies - both possessing roughly as many stars as our Milky Way - careening toward each other before their inevitable merger at a time when the universe was about a fifth its current age, a scene resembling two knights charging in a joust. The galaxies, observed using two Chile-based telescopes, were seen as they existed about 11.4 billion years ago, approximately 2.4 billion years after the Big Bang event that initiated the universe. At the heart of one of the galaxies resides a quasar, a highly luminous object powered by gas and other material falling into a supermassive black hole. The intense radiation across the electromagnetic spectrum unleashed by the quasar is seen disrupting clouds of gas and dust, known as molecular clouds, in the other galaxy. It is molecular clouds that give rise to stars. But the effects of the quasar's radiation turned the clouds in the affected region into "only tiny dense cloudlets that are too small to form stars," said astrophysicist Sergei Balashev of the Ioffe Institute in Saint Petersburg, Russia, co-lead author of the study published on Wednesday in the journal Nature, opens new tab. This is the first time such a phenomenon has been observed, Balashev said. Stars form by the slow contraction under gravity of these clouds, with small centers taking shape that heat up and become new stars. But the galaxy affected by the quasar's radiation was left with fewer regions that could serve as such stellar nurseries, undermining its star formation rate. The interaction between the two galaxies reminded the researchers of a medieval joust. "Much like jousting knights charging toward one another, these galaxies are rapidly approaching. One of them - the quasar host - emits a powerful beam of radiation that pierces the companion galaxy, like a lance. This radiation 'wounds' its 'opponent' as it disrupts the gas," said astronomer and co-lead author Pasquier Noterdaeme of the Paris Institute of Astrophysics in France. Supermassive black holes are found at the heart of many galaxies, including the Milky Way. The researchers estimated the mass of the one that serves as the engine of the quasar studied in this research at about 200 million times that of our sun. The intense gravitational strength of the supermassive black hole pulls gas and other material toward it. As this stuff spirals inward at high speed, it heats up due to friction, forming a disk that emits extremely powerful radiation in two opposite directions, called biconical beams. The ultraviolet light from one of these beams is what played havoc with the gas in the companion galaxy. This supermassive black hole is much more massive than the one at the center of the Milky Way - called Sagittarius A*, or Sgr A* - which possesses roughly 4 million times the mass of the sun and is located about 26,000 light-years from Earth. A light-year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km). The researchers used the Atacama Large Millimeter/submillimeter Array, or ALMA, to characterize the two galaxies and used the European Southern Observatory's Very Large Telescope, or VLT, to probe the quasar as well as the gas in the companion galaxy. The configuration of the galaxies as viewed from the perspective of Earth enabled the researchers to observe the radiation from the quasar passing directly through the companion galaxy. Most galactic mergers that have been observed by astronomers occurred later in the history of the universe. "Galaxies are typically found in groups, and gravitational interactions naturally lead to mergers over cosmic time," Noterdaeme said. "In line with current understanding, these two galaxies will eventually coalesce into a single larger galaxy. The quasar will fade as it exhausts the available fuel."