#أحدث الأخبار مع #ترانزستورفوتونيأخبار قطرمنذ يوم واحدعلومأخبار قطرجورج كلوني وزوجته: معركة استرداد التاريخ في الفن والسياسةعالماء يبتكرون ترانزستور فوتوني سريع بيتاهيرتز تمكّن علماء من ابتكار ترانزستور فوتوني يعمل بسرعة بيتاهيرتز (PHz)، وهو أسرع ترانزستور ضوئي تم إنشاؤه على الإطلاق؛ مما يبشر بتحطيم حدود السرعة في الإلكترونيات، والتي ستساعد في تطوير تقنيات الذكاء الاصطناعي، ويمكن استخدامها في تخزين الطاقة، وتطوير الأدوية. أعدّ دراسة باحثون من جامعة أريزونا، ومعهد كاليفورنيا للتكنولوجيا (Caltech) في الولايات المتحدة، وجامعة لودفيغ-ماكسيميليان في ميونيخ، بقيادة عالم الأتوثانية المصري محمد ثروت حسن، وبيّنوا فيها آلية تبديل تيار بالأتوثانية (as) في ترانزستور ضوئي يعتمد على الجرافين؛ مما يمثل قفزة كبيرة نحو الإلكترونيات الضوئية فائقة السرعة، ومستقبل إلكترونيات موجات الضوء. وباستخدام نبضات ليزر فائق السرعة، قام الفريق بتحفيز تيارات نفقية كمية في ترانزستور مصمم خصيصاً من نوع (جرافين – سيليكون -جرافين (Gr-Si-Gr أتاح ذلك تبديل تيار بين ON/OFF بسرعة تبلغ فقط 630 أتوثانية، أي ما يوازي (1.6 بيتاهيرتز)، مما يجعله أسرع ترانزستور تم إثباته حتى الآن. وبحسب الدراسة المنشورة في دورية «نيتشر كوميونيكيشنز»، يمثل هذا الإنجاز تحولاً نحو الإلكترونيات التي يقودها الضوء، حيث تُحدد سرعات التبديل بواسطة نبضات الليزر بدلاً من قيود أشباه الموصلات التقليدية. وتمهد هذه الدراسة الطريق للحوسبة من الجيل التالي، ومعالجة الإشارات بسرعة بيتاهيرتز، ونقل البيانات البصرية عالي السرعة، مما يقربنا من تحقيق الحواسيب الكمونية الضوئية. المصريان محمد ثروت حسن قائد الفريق البحثي ومحمد يحيى الباحث الأول للدراسة (الفريق البحثي) محمد ثروت حسن، الذي يعمل أستاذاً للفيزياء والضوء بجامعة أريزونا، قال لـ«الشرق الأوسط» إن «الليزر يقوم باستثارة الإلكترونات لتوليد تيار كهربي في الجرافين، ثم تنتقل الإشارة الكهربية من خلال النفق الكمي من الجانب الأيمن للجانب الأيسر من الجرافين من خلال مادة السيليكون، وبالتالي يمكن قياس التيار الكهربي والذي يتبع الشكل الموجي لليزر، وينتج تياراً كهربياً في لحظة من الزمن وبعدها بـ630 أتوثانية يكون التيار الناتج صفراً، أي يقوم بعملية التحويل من تيار، وهي الحالة الممثلة بـ1 في الإلكترونيات الرقمية للحالة صفر». وتشير الدراسة إلى أن واحداً من أكثر الجوانب المذهلة في هذا الإنجاز هي أن الترانزستور يعمل في ظروف بيئية عادية. فعلى عكس العديد من التطورات السابقة في الإلكترونيات فائقة السرعة التي تتطلب درجات حرارة شديدة الانخفاض، أو بيئات مفرغة من الهواء، يعمل هذا الترانزستور الضوئي في درجة حرارة الغرفة، وتحت الضغط الجوي العادي، وهذه القابلية للتطبيق في العالم الحقيقي تجعله مرشحاً للدمج في الأنظمة الإلكترونية والضوئية فائقة السرعة في المستقبل.
أخبار قطرمنذ يوم واحدعلومأخبار قطرجورج كلوني وزوجته: معركة استرداد التاريخ في الفن والسياسةعالماء يبتكرون ترانزستور فوتوني سريع بيتاهيرتز تمكّن علماء من ابتكار ترانزستور فوتوني يعمل بسرعة بيتاهيرتز (PHz)، وهو أسرع ترانزستور ضوئي تم إنشاؤه على الإطلاق؛ مما يبشر بتحطيم حدود السرعة في الإلكترونيات، والتي ستساعد في تطوير تقنيات الذكاء الاصطناعي، ويمكن استخدامها في تخزين الطاقة، وتطوير الأدوية. أعدّ دراسة باحثون من جامعة أريزونا، ومعهد كاليفورنيا للتكنولوجيا (Caltech) في الولايات المتحدة، وجامعة لودفيغ-ماكسيميليان في ميونيخ، بقيادة عالم الأتوثانية المصري محمد ثروت حسن، وبيّنوا فيها آلية تبديل تيار بالأتوثانية (as) في ترانزستور ضوئي يعتمد على الجرافين؛ مما يمثل قفزة كبيرة نحو الإلكترونيات الضوئية فائقة السرعة، ومستقبل إلكترونيات موجات الضوء. وباستخدام نبضات ليزر فائق السرعة، قام الفريق بتحفيز تيارات نفقية كمية في ترانزستور مصمم خصيصاً من نوع (جرافين – سيليكون -جرافين (Gr-Si-Gr أتاح ذلك تبديل تيار بين ON/OFF بسرعة تبلغ فقط 630 أتوثانية، أي ما يوازي (1.6 بيتاهيرتز)، مما يجعله أسرع ترانزستور تم إثباته حتى الآن. وبحسب الدراسة المنشورة في دورية «نيتشر كوميونيكيشنز»، يمثل هذا الإنجاز تحولاً نحو الإلكترونيات التي يقودها الضوء، حيث تُحدد سرعات التبديل بواسطة نبضات الليزر بدلاً من قيود أشباه الموصلات التقليدية. وتمهد هذه الدراسة الطريق للحوسبة من الجيل التالي، ومعالجة الإشارات بسرعة بيتاهيرتز، ونقل البيانات البصرية عالي السرعة، مما يقربنا من تحقيق الحواسيب الكمونية الضوئية. المصريان محمد ثروت حسن قائد الفريق البحثي ومحمد يحيى الباحث الأول للدراسة (الفريق البحثي) محمد ثروت حسن، الذي يعمل أستاذاً للفيزياء والضوء بجامعة أريزونا، قال لـ«الشرق الأوسط» إن «الليزر يقوم باستثارة الإلكترونات لتوليد تيار كهربي في الجرافين، ثم تنتقل الإشارة الكهربية من خلال النفق الكمي من الجانب الأيمن للجانب الأيسر من الجرافين من خلال مادة السيليكون، وبالتالي يمكن قياس التيار الكهربي والذي يتبع الشكل الموجي لليزر، وينتج تياراً كهربياً في لحظة من الزمن وبعدها بـ630 أتوثانية يكون التيار الناتج صفراً، أي يقوم بعملية التحويل من تيار، وهي الحالة الممثلة بـ1 في الإلكترونيات الرقمية للحالة صفر». وتشير الدراسة إلى أن واحداً من أكثر الجوانب المذهلة في هذا الإنجاز هي أن الترانزستور يعمل في ظروف بيئية عادية. فعلى عكس العديد من التطورات السابقة في الإلكترونيات فائقة السرعة التي تتطلب درجات حرارة شديدة الانخفاض، أو بيئات مفرغة من الهواء، يعمل هذا الترانزستور الضوئي في درجة حرارة الغرفة، وتحت الضغط الجوي العادي، وهذه القابلية للتطبيق في العالم الحقيقي تجعله مرشحاً للدمج في الأنظمة الإلكترونية والضوئية فائقة السرعة في المستقبل.