logo
Experts concerned after discovering behavioral shift in ancient predators: 'Activity necessary … is reduced'

Experts concerned after discovering behavioral shift in ancient predators: 'Activity necessary … is reduced'

Yahoo18-03-2025

Saltwater crocodiles in northern Australia are changing how they behave to cope with rising temperatures, spending more time cooling off and less time hunting as their bodies get dangerously hot, reported Cosmos Magazine.
Research published in Current Biology shows that since 2008, the highest body temperatures in these reptiles have increased by 0.55 degrees Celsius.
This matches local air temperature trends, which are rising 0.05-0.2 degrees per decade in northern Australia.
"As ectotherms crocodiles can't regulate their own temperature like birds and mammals," says Kaitlin Barham, a Ph.D. candidate at The University of Queensland and the study's lead author. "So, as their environment is becoming warmer, the animals in our study are also getting hotter and needing to spend more time on cooling behaviours.
"But if their time and energy is dominated by the need to stay cool, activity necessary for hunting, keeping safe from predators or reproducing, is reduced."
Researchers tracked 203 crocodiles in Queensland's Cape York Peninsula using satellite trackers and internal temperature sensors. They found 65% of the animals exceeded their critical thermal limit of 32 degrees (90 degrees Fahrenheit) at least once, with 22% reaching dangerous temperatures above 34 degrees (93 Fahrenheit).
When crocs overheat, they can't perform normal behaviors needed for survival. Their hunting ability suffers dramatically.
"Hotter crocodiles don't dive for as long, which is concerning because as ambush hunters, they need to wait underwater holding their breath for a wallaby or feral pig to come past," explains study co-author Professor Craig Franklin from the University of Queensland.
This heating forces them to surface more often to breathe and spend longer recovering, making them less effective hunters. They're also using more energy on cooling behaviors rather than finding food, staying safe, or reproducing.
Do you think America does a good job of protecting its natural beauty?
Definitely
Only in some areas
No way
I'm not sure
Click your choice to see results and speak your mind.
If these reptiles keep overheating, it could create broader problems for river ecosystems where they play a key role as top predators. Their struggle is a warning sign of how warmer temperatures affect wildlife.
The crocodiles are already helping themselves by adapting their routines. "We saw that crocs were putting a bit more effort into cooling behaviours," Barham explains. "That might be as simple as they're spending more time on the bank at night, rather than on the bank during the day."
Researchers suggest that if warming continues, these reptiles may need to move further south to cooler waters. The study team wants to examine how crocodiles in southern Queensland handle heat waves compared to their northern counterparts.
Scientists will continue monitoring these prehistoric survivors to better understand their adaptations.
Join our free newsletter for good news and useful tips, and don't miss this cool list of easy ways to help yourself while helping the planet.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

The sun: Facts about the bright star at the center of the solar system
The sun: Facts about the bright star at the center of the solar system

Yahoo

timea day ago

  • Yahoo

The sun: Facts about the bright star at the center of the solar system

When you buy through links on our articles, Future and its syndication partners may earn a commission. Quick facts about the sun How big it is: 865,000 miles (1.392 million kilometers) across How far away it is: 93 million miles (150 million km) What type of star it is: A yellow dwarf star The sun is the star at the center of our solar system. It's the largest, brightest and most massive object in the solar system, and it provides the light and heat that life on Earth depends on. Powered by a process called nuclear fusion, the sun can get hotter than 27 million degrees Fahrenheit (15 million degrees Celsius). The sun has been around for over 4 billion years, but one day, it will run out of fuel. Read on to learn more about what our local star is made of, how it formed and what will happen when it dies. Over 1 million Earths could fit inside the sun. The sun may look yellow from Earth, but it actually releases every color of light, meaning its true color is white. The sun is unique in that it's the only star in our solar system. Up to 85% of stars have at least one companion star. The sun contains over 99% of the mass of our entire solar system. Like Earth, the sun also rotates on its axis. Each rotation takes about 27 Earth days. The sun is a ball of gas and plasma made mostly of hydrogen. The sun uses these vast stores of hydrogen to generate the heat and light that sustain our planet. It does this through a process called nuclear fusion, in which two hydrogen atoms combine to create a different element, helium. The sun is about three-quarters hydrogen and one-quarter helium, with tiny amounts of metals. The larger a star is, the more rapidly it burns through its hydrogen. Some of the largest known stars — such as those with masses 40 times that of the sun — will live just 1 million years. By contrast, the sun will have a lifetime of around 10 billion years. Different parts of the sun reach different temperatures. The sun's core gets as hot as 27 million F (15 million C). The part of the sun we can see from Earth is called the photosphere, which is the "surface" of the huge ball of plasma. The temperature of the photosphere is about 9,900 F (5,500 C). Above the photosphere is the loose outer atmosphere of the sun, known as the corona. We can't see the corona from Earth under ordinary conditions, though it can be photographed during a total solar eclipse. The sun formed around 4.5 billion years ago. At that time, the area of the Milky Way galaxy that would become the solar system was a dense cloud of gas — the leftovers of an earlier generation of stars. The densest region of this cloud collapsed and created a seed, called a protostar, that would become the sun. As this young protostar grew, planets, moons and asteroids formed from the remaining raw material, and then began circling around the growing sun as they were sucked into orbit by the star's powerful gravity. At the heart of the sun, this same force sparked nuclear fusion. The heat and light from this nuclear reaction allowed life on Earth to evolve and prosper. However, this reaction will eventually lead to the sun's death when it runs out of nuclear fuel. The sun is around halfway through its lifetime. Our star is locked in a constant battle as outward pressure from nuclear fusion fights the inward pull of gravity. When the sun runs out of hydrogen in about 5 billion years, the inward force of gravity will win. The center of the sun will collapse, compressing into a dense core. Helium will start fusing into even denser elements, like carbon, nitrogen and oxygen. While this happens, the heat generated by the fusing of these elements will push the sun's outer shell to swell. This will be bad news for the inner planets of the solar system — including Earth. As the sun becomes a type of star called a red giant, its outer shell will expand to the orbit of Mars, gobbling up Mercury, Venus, Earth and Mars. But the red-giant phase is not when the sun will die. The outer layers that swell during the red-giant phase will become a shell of gas called a surrounding planetary nebula. This shell will be shed after approximately 1 billion years. This will expose the star's smoldering core, which, by this point, will be a dense ball called a white dwarf. As a white dwarf, the sun will dim. The material from the planetary nebula will spread out into the galaxy and form the building blocks of the next generation of stars and planets. Image 1 of 5 Space agencies have launched many spacecraft that help us observe and gather data about the sun. Pictured here is an artist's concept of the sun being observed by NASA's Parker Solar Probe. Image 2 of 5 The red giant star Camelopardalis. The sun will eventually become a red giant, and as it expands, it will engulf its nearest planets, including Earth. Image 3 of 5 Sunspots are darker, cooler areas that temporarily appear on the sun. They're caused by changes in the sun's magnetic field. Image 4 of 5 Solar storms happen when the sun releases flares of energy and particles. Image 5 of 5 Auroras on Earth happen when charged particles from the sun interact with our planet's atmosphere. Is Earth getting closer to the sun, or farther away? Where on Earth does the sun rise first? What color is the sun?

‘Superorganisms' were just seen in the wild for the first time ever
‘Superorganisms' were just seen in the wild for the first time ever

Yahoo

timea day ago

  • Yahoo

‘Superorganisms' were just seen in the wild for the first time ever

If you purchase an independently reviewed product or service through a link on our website, BGR may receive an affiliate commission. For years, scientists have watched nematodes build massive superorganisms in the form of writhing towers. But, they've only seen it happen in the lab. Now, though, researchers write that they've observed these massive, disturbing towers writhing in the wild for the first time ever. Previously, researchers believed that the behavior was meant to be an attempt to escape from the rest of the group. However, new images of the writhing towers appear to suggest they're actually used cooperatively, to benefit many worms instead of just one. Today's Top Deals Best deals: Tech, laptops, TVs, and more sales Best Ring Video Doorbell deals Memorial Day security camera deals: Reolink's unbeatable sale has prices from $29.98 The researchers reported their findings in a report published in Current Biology, writing that these towering superorganisms only existed naturally in their imaginations for the longest of times. Observing the towers also taught researchers quite a bit about how different species of nematode work together. While watching the towers, the scientists note that while many different species crawled through the worm towers, only one species, a tough larval stage known as a dauer, actually participated in building up the writing masses. This specificity in the construction of the tower points to something more than just random cooperation. These towers are truly superorganisms, then, and not just piles of writing worm bodies. This discovery also got researchers thinking: could other worms form writhing towers like this, too? To test that hypothesis, they stuck a toothbrush bristle into a food-free agar plate, then unleashed a bunch of roundworms from the species Caenorhabditis elegans into the structure. Immediately, the worms began to work together and build up a tower. Within two hours, the researchers say the C. elegans had formed a tower using the bristle as its spine. The researchers watched as some worms along the superorganism writhed and acted as exploratory arms. Others acted as bridges between gaps. To see how the superorganism would respond, the researchers tapped the top of the tower with a glass pick. Almost immediately, the worms began to wriggle and move toward the area. This, they say, shows that these towers are always growing and moving toward stimulus. It's an intriguing show of cooperation between the worms, and just one more way that worms continue to astound scientists. It also raises more questions about why these superorganisms form in the first place. Even more interesting, though, is that the roundworms didn't appear to hold any kind of class system in place. Where the nematodes only relied on the larval stage worms to create the tower, all the roundworms chimed in to help build up the mass. Researchers will need to dig deeper to see exactly why worms form these writhing superorganisms. Hopefully other species, like the parasitic hairworm, aren't capable of this same kind of behavior. More Top Deals Amazon gift card deals, offers & coupons 2025: Get $2,000+ free See the

UH: Urgent response required to save world's coral reefs
UH: Urgent response required to save world's coral reefs

Yahoo

timea day ago

  • Yahoo

UH: Urgent response required to save world's coral reefs

HONOLULU (KHON2) — A study by researchers at University of Hawaiʻi at Mānoa's Hawaiʻi Institute of Marine Biology found that coral reefs are less frequent in the tropics due to warming oceans. The research found that the reefs are unable to beat the heat and effects of climate change, which rings the emergency alarm for conservationists. 8 takeaways from Hawaiʻi's top ranking for school lunches However, there is still hope, as the research showed that immediate actions to reduce greenhouse gas emissions can improve the future of these iconic ocean scenes across the planet. 'As the ocean warms, species tend to move poleward,' said lead author Noam Vogt-Vincent, lead author of the study. 'We know from the fossil record that coral reefs have previously expanded their ranges in response to past climate change, but we didn't know whether this was a matter of decades or millennia.' In order to predict changes in the distribution of these reefs, the research team used complex simulation models running on UH's high-performance computing cluster. The team created a global model including approximately 50,000 coral reef sites to the model, the researches tested three future emissions scenarios: one with low warming, around two degrees Celsius, a moderate warming scenario, around three degrees Celsius and a high warming model, which is greater than four degrees Celsius. 'By modeling coral reefs globally and incorporating evolution and connectivity, this study provides an unprecedented long-term view of how these complex ecosystems will respond to climate change,' said research professor Lisa McManus. Provided the current condition of the climate on coral reefs, the researchers found both good news and bad news. Download the free KHON2 app for iOS or Android to stay informed on the latest news 'Unfortunately, while we've confirmed that coral reef range expansion will indeed eventually occur, the biggest coral losses are expected in the next 60 years, meaning these new, higher-latitude reefs won't form fast enough to save most tropical coral species,' Vogt-Vincent said. While northern Florida, southern Australia and southern Japan may see new reefs in the future, they will not be in existence soon enough to help corals survive through the century, UH said. While the future seems bleak, there is still hope, with significant cuts in emissions, such as those outlined in the Paris Climate Agreement, could dramatically reduce the loss of coral. Aliʻi Drive to revert to a two-way street Currently, coral reduction is on track to lose up to 86% of coral reefs; but with lower emissions, losses could be reduced to only around 33% of coral reefs. 'Our study suggests that reductions in greenhouse gas emissions will not just improve coral reef futures this century, but for hundreds to thousands of years into the future,' Vogt-Vincent said. 'Our actions over the next few decades will therefore have incredibly long-lasting consequences for coral reefs globally.' Researchers will continue to monitor reef levels with their supercomputer power to try to better understand both threats and solutions surrounding the world's coral reefs. For more information, visit the Hawaiʻi Institute of Marine Biology's website. Copyright 2025 Nexstar Media, Inc. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store