logo
Earth is spinning faster, making days shorter — here's why scientists say it could be a problem

Earth is spinning faster, making days shorter — here's why scientists say it could be a problem

CNN6 days ago
Earth is spinning faster this summer, making the days marginally shorter and attracting the attention of scientists and timekeepers.
July 10 was the shortest day of the year so far, lasting 1.36 milliseconds less than 24 hours, according to data from the International Earth Rotation and Reference Systems Service and the US Naval Observatory, compiled by timeanddate.com. More exceptionally short days are coming on July 22 and August 5, currently predicted to be 1.34 and 1.25 milliseconds shorter than 24 hours, respectively.
The length of a day is the time it takes for the planet to complete one full rotation on its axis —24 hours or 86,400 seconds on average. But in reality, each rotation is slightly irregular due to a variety of factors, such as the gravitational pull of the moon, seasonal changes in the atmosphere and the influence of Earth's liquid core. As a result, a full rotation usually takes slightly less or slightly more than 86,400 seconds — a discrepancy of just milliseconds that doesn't have any obvious effect on everyday life.
However these discrepancies can, in the long run, affect computers, satellites and telecommunications, which is why even the smallest time deviations are tracked using atomic clocks, which were introduced in 1955. Some experts believe this could lead to a scenario similar to the Y2K problem, which threatened to bring modern civilization to a halt.
Atomic clocks count the oscillations of atoms held in a vacuum chamber within the clock itself to calculate 24 hours to the utmost degree of precision. We call the resulting time UTC, or Coordinated Universal Time, which is based on around 450 atomic clocks and is the global standard for timekeeping, as well as the time to which all our phones and computers are set.
Astronomers also keep track of Earth's rotation — using satellites that check the position of the planet relative to fixed stars, for example — and can detect minute differences between the atomic clocks' time and the amount of time it actually takes Earth to complete a full rotation. Last year, on July 5, 2024, Earth experienced the shortest day ever recorded since the advent of the atomic clock 65 years ago, at 1.66 milliseconds less than 24 hours.
'We've been on a trend toward slightly faster days since 1972,' said Duncan Agnew, a professor emeritus of geophysics at the Scripps Institution of Oceanography and a research geophysicist at the University of California, San Diego. 'But there are fluctuations. It's like watching the stock market, really. There are long-term trends, and then there are peaks and falls.'
In 1972, after decades of rotating relatively slowly, Earth's spin had accumulated such a delay relative to atomic time that the International Earth Rotation and Reference Systems Service mandated the addition of a 'leap second' to the UTC. This is similar to the leap year, which adds an extra day to February every four years to account for the discrepancy between the Gregorian calendar and the time it takes Earth to complete one orbit around the sun.
Since 1972, a total of 27 leap seconds have been added to the UTC, but the rate of addition has increasingly slowed, due to Earth speeding up; nine leap seconds were added throughout the 1970s while no new leap seconds have been added since 2016.
In 2022, the General Conference on Weights and Measures (CGPM) voted to retire the leap second by 2035, meaning we may never see another one added to the clocks. But if Earth keeps spinning faster for several more years, according to Agnew, eventually one second might need to be removed from the UTC. 'There's never been a negative leap second,' he said, 'but the probability of having one between now and 2035 is about 40%.'
The shortest-term changes in Earth's rotation, Agnew said, come from the moon and the tides, which make it spin slower when the satellite is over the equator and faster when it's at higher or lower altitudes. This effect compounds with the fact that during the summer Earth naturally spins faster — the result of the atmosphere itself slowing down due to seasonal changes, such as the jet stream moving north or south; the laws of physics dictate that the overall angular momentum of Earth and its atmosphere must remain constant, so the rotation speed lost by the atmosphere is picked up by the planet itself. Similarly, for the past 50 years Earth's liquid core has also been slowing down, with the solid Earth around it speeding up.
By looking at the combination of these effects, scientists can predict if an upcoming day could be particularly short. 'These fluctuations have short-period correlations, which means that if Earth is speeding up on one day, it tends to be speeding up the next day, too,' said Judah Levine, a physicist and a fellow of the National Institute of Standards and Technology in the time and frequency division. 'But that correlation disappears as you go to longer and longer intervals. And when you get to a year, the prediction becomes quite uncertain. In fact, the International Earth Rotation and Reference Systems Service doesn't predict further in advance than a year.'
While one short day doesn't make any difference, Levine said, the recent trend of shorter days is increasing the possibility of a negative leap second. 'When the leap second system was defined in 1972, nobody ever really thought that the negative second would ever happen,' he noted. 'It was just something that was put into the standard because you had to do it for completeness. Everybody assumed that only positive leap seconds would ever be needed, but now the shortening of the days makes (negative leap seconds) in danger of happening, so to speak.'
The prospect of a negative leap second raises concerns because there are still ongoing problems with positive leap seconds after 50 years, explained Levine. 'There are still places that do it wrong or do it at the wrong time, or do it (with) the wrong number, and so on. And that's with a positive leap second, which has been done over and over. There's a much greater concern about the negative leap second, because it's never been tested, never been tried.'
Because so many fundamental technologies systems rely on clocks and time to function, such as telecommunications, financial transactions, electric grids and GPS satellites just to name a few, the advent of the negative leap second is, according to Levine, somewhat akin to the Y2K problem — the moment at the turn of the last century when the world thought a kind of doomsday would ensue because computers might have been unable to negotiate the new date format, going from '99' to '00.'
Climate change is also a contributing factor to the issue of the leap second, but in a surprising way. While global warming has had considerable negative impacts on Earth, when it comes to our timekeeping, it has served to counteract the forces that are speeding up Earth's spin. A study published last year by Agnew in the journal Nature details how ice melting in Antarctica and Greenland is spreading over the oceans, slowing down Earth's rotation — much like a skater spinning with their arms over their head, but spinning slower if the arms are tucked along the body.
'If that ice had not melted, if we had not had global warming, then we would already be having a leap negative leap second, or we would be very close to having it,' Agnew said. Meltwater from Greenland and Antarctica ice sheets has is responsible for a third of the global sea level rise since 1993, according to NASA.
The mass shift of this melting ice is not only causing changes in Earth's rotation speed, but also in its rotation axis, according to research led by Benedikt Soja, an assistant professor at the department of civil, environmental and geomatic engineering of The Swiss Federal Institute of Technology in Zurich, Switzerland. If warming continues, its effect might become dominant. 'By the end of this century, in a pessimistic scenario (in which humans continue to emit more greenhouse gases) the effect of climate change could surpass the effect of the moon, which has been really driving Earth's rotation for the past few billions of years,' Soja said.
At the moment, potentially having more time to prepare for action is helpful, given the uncertainty of long-term predictions on Earth's spinning behavior. 'I think the (faster spinning) is still within reasonable boundaries, so it could be natural variability,' Soja said. 'Maybe in a few years, we could see again a different situation, and long term, we could see the planet slowing down again. That would be my intuition, but you never know.'
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

The asteroid that will spare Earth might hit the moon instead. What happens if it does?
The asteroid that will spare Earth might hit the moon instead. What happens if it does?

Yahoo

time10 hours ago

  • Yahoo

The asteroid that will spare Earth might hit the moon instead. What happens if it does?

The asteroid known as 2024 YR4 is out of sight yet still very much on scientists' minds. The building-sized object, which initially appeared to be on a potential collision course with Earth, is currently zooming beyond the reach of telescopes on its orbit around the sun. But as scientists wait for it to reappear, its revised trajectory is now drawing attention to another possible target: the moon. Discovered at the end of 2024, the space rock looked at first as if it might hit our planet by December 22, 2032. The chance of that impact changed with every new observation, peaking at 3.1% in February — odds that made it the riskiest asteroid ever observed. Ground- and space-based telescope observations were crucial in helping astronomers narrow in on 2024 YR4's size and orbit. With more precise measurements, researchers were ultimately able to rule out an Earth impact. The latest observations of the asteroid in early June, before YR4 disappeared from view, have improved astronomers' knowledge of where it will be in seven years by almost 20%, according to NASA. That data shows that even with Earth avoiding direct impact, YR4 could still pose a threat in late 2032 by slamming into the moon. The impact would be a once-in-a-lifetime event for humanity to witness — but it could also send fine-grained lunar material hurtling toward our planet. While Earth wouldn't face any significant physical danger should the asteroid strike the moon, there is a chance that any astronauts or infrastructure on the lunar surface at that time could be at risk — as could satellites orbiting our planet that we depend on to keep vital aspects of life, including navigation and communications, running smoothly. Any missions in low-Earth orbit could also be in the pathway of the debris, though the International Space Station is scheduled to be deorbited before any potential impact. Initially, YR4 was seen as a case study in why scientists do the crucial work of planetary defense, discovering and tracking asteroids to determine which ones have a chance of colliding with Earth. Now, astronomers say this one asteroid could redefine the range of risks the field addresses, expanding the purview of the work to include monitoring asteroids that might be headed for the moon as well. 'We're starting to realize that maybe we need to extend that shield a little bit further,' said Dr. Paul Wiegert, a professor of astronomy and physics at the Western University in London, Ontario. 'We now have things worth protecting that are a bit further away from Earth, so our vision is hopefully expanding a little bit to encompass that.' In the meantime, researchers are assessing just how much chaos a potential YR4 lunar impact could create — and whether anything can be done to mitigate it. 'City killer' on the moon The threatening hunk of rock appears as just a speck of light through even the strongest astronomical tools. In reality, YR4 is likely about 60 meters (about 200 feet) in diameter, according to observations in March by the James Webb Space Telescope, the most powerful space-based observatory in operation. 'Size equals energy,' said Julien de Wit, associate professor of planetary sciences at the Massachusetts Institute of Technology, who observed YR4 with Webb. 'Knowing YR4's size helped us understand how big of an explosion it could be.' Astronomers believe they have found most of the near-Earth asteroids the field would classify as 'planet killers' — space rocks that are 1 kilometer (0.6 mile) across or larger and could be civilization-ending, said Dr. Andy Rivkin, planetary astronomer from the Johns Hopkins University's Applied Physics Laboratory in Maryland. The planet killer that slammed into Earth 66 million years ago and led to the extinction of dinosaurs was estimated to be roughly 6 miles (about 10 kilometers) in diameter. Smaller asteroids such as YR4, which was colloquially dubbed a 'city killer' after its discovery, could cause regional devastation if they collide with our planet. About 40% of near-Earth space rocks larger than 140 meters (460 feet) but smaller than a kilometer — capable of more widespread destruction — have been identified, according to NASA. But astronomers have never really had a chance to watch a collision of that size occur on the moon in real time, Wiegert said. The latest glimpses of YR4 on June 3 before it passed out of view revealed a 4.3% chance of a YR4 lunar impact — small but decent enough odds for scientists to consider how such a scenario might play out. A striking meteor shower — and a risk Initial calculations suggest the impact has the largest chance of occurring on the near side of the moon — the side we can see from Earth. 'YR4 is so faint and small we were able to measure its position with JWST longer than we were able to do it from the ground,' said Rivkin, who has been leading the Webb study of YR4. 'And that lets us calculate a much more precise orbit for it, so we now have a much better idea of where it will be and won't be.' The collision could create a bright flash that would be visible with the naked eye for several seconds, according to Wiegert, lead author of a recent paper submitted to the American Astronomical Society journals analyzing the potential lunar impact. The collision could create an impact crater on the moon estimated at 1 kilometer wide (0.6 miles wide), Wiegert said — about the size of Meteor Crater in Arizona, Rivkin added. It would be the largest impact on the moon in 5,000 years and could release up to 100 million kilograms (220 million pounds) of lunar rocks and dust, according to the modeling in Wiegert's study. Even pieces of debris that are just tens of centimeters in size could present a hazard for any astronauts who may be present on the moon, or any structures they have built for research and habitation, Wiegert said. The moon has no atmosphere, so the debris from the event could be widespread on the lunar surface, he added. On average, the moon is 238,855 miles (384,400 kilometers) away from Earth, according to NASA. Particles the size of large sand grains, ranging from 0.1 to 10 millimeters in size, of lunar material could reach Earth between a few days and a few months after the asteroid strike because they'll be traveling incredibly fast, creating an intense, eye-catching meteor shower, Wiegert said. 'There's absolutely no danger to anyone on the surface,' Wiegert said. 'We're not expecting large boulders or anything larger than maybe a sugar cube, and our atmosphere will protect us very nicely from that. But they're traveling faster than a speeding bullet, so if they were to hit a satellite, that could cause some damage.' Not all lunar debris that reaches the Earth is so small, and it depends on the angle and type of impact to the moon, according to Washington University in St. Louis. Space rocks slamming into the lunar surface over millions of years have resulted in various sizes of lunar meteorites found on Earth. Preparing for impact Hundreds to thousands of impacts from millimeter-size debris could affect Earth's satellite fleet, meaning satellites could experience up to 10 years' equivalent of meteor debris exposure in a few days, Wiegert said. Humankind depends on vital space infrastructure, said Dan Oltrogge, chief scientist at COMSPOC, a space situational awareness software company that develops solutions for handling hazards such as space debris. 'Space touches almost every aspect of our lives today, ranging from commerce, communications, travel, industry, education, and social media, so a loss of access to and effective use of space presents a serious risk to humanity,' Oltrogge said. The event is unlikely to trigger a Kessler Syndrome scenario in which debris from broken satellites would collide with others to create a domino effect or fall to Earth. Instead, it might be more akin to when a piece of gravel strikes a car windshield at high speed, meaning solar panels or other delicate satellite parts might be damaged, but the satellite will remain in one piece, Wiegert said. While a temporary loss of communication and navigation from satellites would create widespread difficulties on Earth, Wiegert said he believes the potential impact is something for satellite operators, rather than the public, to worry about. Protecting Earth and the moon Scientists and astronomers around the world are thinking about the possible scenarios since they could not rule out a lunar impact before YR4 disappeared from view, Wiegert said. 'We realize that an impact to the moon could be consequential, so what would we do?' de Wit said. A potential planetary defense plan might be clearer if the asteroid were headed straight for Earth. Rivkin helped test one approach in September 2022 as the principal investigator of NASA's Double Asteroid Redirection Test, or DART, which intentionally slammed a spacecraft into the asteroid Dimorphos in September 2022. Dimorphos is a moonlet asteroid that orbits a larger parent asteroid known as Didymos. Neither poses a threat to Earth, but the double-asteroid system was a perfect target to test deflection technology because Dimorphos' size is comparable to asteroids that could harm our planet in the event of an impact. The DART mission crashed a spacecraft into the asteroid at 13,645 miles per hour (6 kilometers per second) to find out whether such a kinetic impact would be enough to change the motion of a celestial object in space. It worked. Since the day of the collision, data from ground-based telescopes has revealed that the DART spacecraft did alter Dimorphos' orbital period — or how long it takes to make a single revolution around Didymos — by about 32 or 33 minutes. And scientists have continued to observe additional changes to the pair, including how the direct hit likely deformed Dimorphos due to the asteroid's composition. Similarly, if YR4 strikes the moon and doesn't result in damaging effects for satellites, it could create a tremendous opportunity for researchers to learn how the lunar surface responds to impacts, Wiegert said. But whether it would make sense to send a DART-like mission to knock YR4 off a collision course with the moon remains to be seen. It will depend on future risk assessments by planetary defense groups when the asteroid comes back into view around 2028, de Wit said. Though defense plans for a potential moon impact still aren't clear, YR4's journey underscores the importance — and the challenges — of tracking objects that are often impossible to see. Hidden threats YR4 was detected by the Asteroid Terrestrial-impact Last Alert System, or ATLAS telescope, in Río Hurtado, Chile, two days after the asteroid had already made its closest pass by Earth, hidden by the bright glare of the sun as it approached our planet. The same thing occurred when an asteroid measuring roughly 20 meters (about 65 feet) across hit the atmosphere and exploded above Chelyabinsk, Russia, on February 15, 2013, damaging thousands of buildings, according to the European Space Agency. While no one died, about 1,500 people were injured when the windows in homes and businesses blew out due to the shock wave. Trying to observe asteroids is challenging for many reasons, Rivkin said. Asteroids are incredibly faint and hard to see because rather than emitting their own light, they only reflect sunlight. And because of their relatively tiny size, interpreting observations is not a clear-cut process like looking through a telescope at a planet such as Mars or Jupiter. 'For asteroids, we only see them as a point of light, and so by measuring how bright they are and measuring their temperature, basically we can get a size based on how big do they have to be in order to be this bright,' Rivkin said. For decades, astronomers have had to search for faint asteroids by night, which means missing any that may be on a path coming from the direction of the sun — creating the world's biggest blind spot for ground-based telescopes that can't block out our star's luminosity. But upcoming telescopes — including NASA's NEO Surveyor expected to launch by the end of 2027 and the European Space Agency's Near-Earth Object Mission in the InfraRed, or NEOMIR satellite, set for liftoff in the early 2030s — could shrink that blind spot, helping researchers detect asteroids much closer to the sun. 'NEOMIR would have detected asteroid 2024 YR4 about a month earlier than ground-based telescopes did,' said Richard Moissl, head of ESA's Planetary Defence Office, in a statement. 'This would have given astronomers more time to study the asteroid's trajectory and allowed them to much sooner rule out any chance of Earth impact in 2032.' NASA and other space agencies are constantly on the lookout for potentially hazardous asteroids, defined as such based on their distance from Earth and ability to cause significant damage should an impact occur. Asteroids that can't get any closer to our planet than one-twentieth of Earth's distance from the sun are not considered to be potentially hazardous asteroids, according to NASA. When the new Vera C. Rubin Observatory, located in the Andes in Chile, released its first stunning images of the cosmos in June, researchers revealed the discovery of more than 2,100 previously unknown asteroids after seven nights of those newly detected space rocks, seven were near-Earth objects. A near-Earth object is an asteroid or comet on an orbit that brings it within 120 million miles (about 190 million kilometers) of the sun, which means it has the potential to pass near Earth, according to NASA. None of the new ones detected by Rubin were determined to pose a threat to our planet. Rubin will act as a great asteroid hunter, de Wit said, while telescopes such as Webb could be a tracker that follow up on Rubin's discoveries. A proposal by Rivkin and de Wit to use Webb to observe YR4 in the spring of 2026 has just been approved. Webb is the only telescope with a chance of glimpsing the asteroid before 2028. 'This newly approved program will buy decision makers two extra years to prepare — though most likely to relax, as there is an 80% chance of ruling out impact — while providing key experience-based lessons for handling future potential impactors to be discovered by Vera Rubin,' de Wit said. And because of the twists and turns of YR4's tale thus far, asteroids that have potential to affect the moon could become objects of even more intense study in the future. 'If this really is a thing that we only have to worry about every 5,000 years or something, then maybe that's less pressing,' Rivkin said. 'But even just asking what would we do if we did see something that was going to hit the moon is at least something that we can now start thinking about.' Sign up for CNN's Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more.

Human Babies Aren't Supposed to Have 3 Parents—but Now They Can
Human Babies Aren't Supposed to Have 3 Parents—but Now They Can

Yahoo

time13 hours ago

  • Yahoo

Human Babies Aren't Supposed to Have 3 Parents—but Now They Can

"Hearst Magazines and Yahoo may earn commission or revenue on some items through these links." Here's what you'll learn when you read this story: The first babies with three biological parents were born out of a new technique to prevent mitochondrial disease. The nucleus of an egg fertilized in vitro was transferred into a donor egg without a nucleus, but with viable mitochondria. Eight healthy babies, including a set of twins, were born with low to undetectable levels of mitochondrial mutations. The only creatures known to conceive offspring from more than two parents are salamanders. Females from the genus Ambystoma (which are notoriously promiscuous) mate with up to three different males, and that DNA is then incorporated into what is known as a triploid genome in their offspring. Now a version of this has become possible in humans. It seems limb regeneration isn't the only way medical intervention can put humans on salamanders' level. Being born with three genomes is not a phenomenon that occurs naturally in Homo sapiens, but in an attempt to prevent certain genetic conditions caused by mutations in the mitochondria, scientists have found a way. Mitochondrial DNA or mtDNA is exclusively passed down from the maternal side. Dysfunction in the mitochondria can lead to metabolic diseases characterized by symptoms such as seizures, developmental delays, blindness, and loss of muscular function. Some can even be fatal. Mitochondrial diseases occur in about 1 in every 5,000 people. They were previously only preventable by using a donor egg or foregoing the conception of biological children altogether. This is why pediatric neurologist Bobby McFarland, of Newcastle University in the UK, led an experimental study that would reduce and potentially eliminate the risk of mitochondrial disease with a new method of in vitro fertilization. McFarland and his research team wanted see if removing the nucleus of an egg and placing it in a donor egg with viable mitochondria would result in healthy offspring. 'We found that pronuclear transfer, a form of mitochondrial donation, was effective in reducing the level of pathogenic mtDNA variant to substantially below the threshold for clinical disease in the offspring of women with homoplasmic (or high heteroplasmic) levels,' he said in a study recently published in the New England Journal of Medicine. When mitochondria are homoplasmic, all copies produced by cell division have mutations. Mutation levels vary in heteroplasmic mitochondria. Preimplantation genetic testing (PGT) can screen for these abonormalities, and women with homoplasmy or high levels of heteroplasmy can benefit from what is now known as pronuclear transfer. This involves eggs from both the mother and donor being fertilized with the father's sperm in vitro. Nuclei are then removed from both eggs after ten hours. Since the nucleus carries most genetic material and has no connection to mitochondrial disease, the mother's nucleus is implanted into the donor egg to take advantage of its mitochondria. While there is a chance that a few of the mother's mitochondria may end up in the embryo, it is unlikely to cause a debilitating disease. Levels of defective mitochondria in offspring conceived via pronuclear transfer were low enough to escape that fate. Eight pregnancies (including a set of twins) resulted from the experiment, and while there were a few minor health problems in the newborns, these were either treatable or corrected themselves. Not only were levels of heteroplasty low for the babies, but undetectable in five of them. Developmental progress also turned out to be normal. Though one baby had a form of infant epilepsy, and another had heart arrhythmia and hyperlipidemia, or high levels of fats and lipids in the blood, both of these conditions were treated and resolved. Whether the hyperlipidemia was even caused by mtDNA is uncertain, especially because the mother also had severe hyperlipidemia during her pregnancy. Though there was a chance that any of the mothers with pathogenic mtDNA had a higher risk of complications during pregnancy, which could possibly cause their children to have health issues, there is no proof for now. 'We are assessing, over the long term, the health and extent of heteroplasmy (if detectable) of the offspring,' McFarland and his team said. 'Indeed, the role of mitochondrial donation as a choice for women with a heritable pathogenic mtDNA variant will only be established with the availability of additional data.' You Might Also Like Can Apple Cider Vinegar Lead to Weight Loss? Bobbi Brown Shares Her Top Face-Transforming Makeup Tips for Women Over 50 Solve the daily Crossword

Experts issue warning over dangerous insects spreading rapidly across US: 'They're gonna eat everything they can'
Experts issue warning over dangerous insects spreading rapidly across US: 'They're gonna eat everything they can'

Yahoo

time18 hours ago

  • Yahoo

Experts issue warning over dangerous insects spreading rapidly across US: 'They're gonna eat everything they can'

Experts issue warning over dangerous insects spreading rapidly across US: 'They're gonna eat everything they can' Warm weather is bringing some hungry beetles out of hiding. What's happening? Invasive Japanese beetles have an enormous appetite, and they're out of control in Kansas. The small, shimmering scarab beetles are native to Japan and considered highly invasive in the United States and Europe. Their eggs are laid in the soil, and larvae eat roots underground until temperatures rise. Once they emerge, the beetles voraciously consume leaves. While some invasive species fixate on one plant, this hungry beetle doesn't discriminate. They feed on "more than 300 different types of plants, such as Virginia creeper, linden, crabapple, roses, American elm, and willow, along with crops like corn and soybeans," according to KSNT. Why are the beetles concerning? Despite their small size, these beetles have a devastating impact on agriculture. Roots are destroyed by their larvae, and leaves and fruit are eaten by the mature beetles — the entire crop is lost. "When an insect is out for three months, they're gonna eat everything they can," Kansas State University professor Raymond Cloyd told KSNT. It's not just Kansas's crops at risk. Other states lose millions or billions in agricultural income. Invasive species are one of the main drivers of extinction, along with habitat loss. Invasive species outcompete native ones for resources, alter habitats, and even introduce new diseases. What's being done to stop the beetles? These beetles are extremely difficult to get rid of. Many traditional pheromone traps attract beetles, but they aren't as successful in capturing or killing them. A college student at the University of Minnesota developed their own Japanese beetle trap, and it looks promising. Without traps, residents use insecticides on their plants and soil to kill beetles and their grubs. For those who are hesitant to use pesticides on their plants, the beetles can be picked off by hand and dumped in warm, soapy water to kill them. Conservationists are constantly developing new ways to combat invasive species, from releasing wasps to fight fruit flies to eating invasive crawfish. Do you think your lawn has enough greenery in it? Definitely I'd like a little more I want a lot more Not at all Click your choice to see results and speak your mind. Join our free newsletter for good news and useful tips, and don't miss this cool list of easy ways to help yourself while helping the planet. Solve the daily Crossword

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store