
Chile takes new steps to save endangered Darwin's frog
The initiative from the Chilean government's climate change and sustainability committee seeks to protect habitats and reproductive areas, including by working with private landowners.
The goal is to discover new populations, if possible, of Darwin's frog and substantially increase the area inhabited by current populations.
The frog, originally thought to be a single species, actually comprises two: the endangered Rhinoderma darwinii (Southern Darwin's frog) and the Rhinoderma rufum (Northern Darwin's frog), which is categorized as "critically endangered" and has already virtually disappeared.
The frog, which measures 3 cm (1.18 inches), was discovered in Chile's southern Chiloe islands by Charles Darwin during his 1834 trip around the world.
Forest fires, climate change, invasive species and urbanization have hurt the humid forests of southern Chile and Argentina where the Darwin's frog typically lives.
Charif Tala, head of the Environment Ministry's Species Conservation Department, said the fragmentation of Chile's forests has caused the number of populations in Chile and Argentina to decline to 62. The monitoring of frog populations only began in recent years, the ministry said, after a dramatic decline.
Andres Valenzuela, director of a Chilean advocacy nonprofit called NGO Ranita de Darwin, said he hoped the initiative would bring more awareness of the frog's plight to people throughout Chile.
"We are very hopeful that this will allow us to improve conservation ... and that the people of our country will begin to appreciate these unique and important species we have in our native forests," Valenzuela said.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Reuters
18 hours ago
- Reuters
Evolutionary origins of the potato revealed - and a tomato was involved
WASHINGTON, Aug 1 (Reuters) - The potato is one of the world's food staples, first cultivated thousands of years ago in the Andes region of South America before spreading globally from the 16th century. But despite its importance to humankind, the evolutionary origins of the potato have remained puzzling - until now. A new analysis of 450 genomes from cultivated potatoes and 56 genomes of wild potato species has revealed that the potato lineage originated through natural interbreeding between a wild tomato plant and a potato-like species in South America about 9 million years ago. This hybridization event led to the appearance of the nascent potato plant's tuber, an enlarged structure housing nutrients underground, according to the researchers, who also identified two crucial genes involved in tuber formation. Whereas in a tomato plant the edible part is the fruit, in the potato plant it is the tuber. "Potatoes are truly one of humanity's most remarkable food staples, combining extraordinary versatility, nutritional value and cultural ubiquity in ways few crops can match," said Sanwen Huang, a genome biologist and plant breeder at the Chinese Academy of Agricultural Sciences and senior author of the study published on Friday in the journal Cell, opens new tab. "People eat potatoes using virtually every cooking method - baking, roasting, boiling, steaming and frying. Despite being stereotyped as carbohydrates, potatoes offer vitamin C, potassium, fiber and resistant starch, and are naturally gluten-free, low-fat and satiating - a nutrient-dense calorie source," Huang added. Resistant starch is a type of carbohydrate that resists digestion in the small intestine and ferments in the large intestine, feeding beneficial bacteria in the gut. The modern-day potato plant's scientific name is Solanum tuberosum. Its two parents identified in the study were plants that were the ancestors of a potato-like species now found in Peru named Etuberosum, which closely resembles the potato plant but lacks a tuber, and the tomato plant. These two plants themselves shared a common ancestor that lived about 14 million years ago, and were able to naturally interbreed when the fortuitous hybridization event occurred five million years after they had diverged from each other. "This event led to a reshuffling of genes such that the new lineage produced tubers, allowing these plants to expand into the newly created cold, dry habitats in the rising Andes mountain chain," said botanist Sandra Knapp of the Natural History Museum in London, a co-author of the study. This hybridization event coincided with the rapid uplift of the Andes. With a tuber, the potato plant was able to adapt to the changing regional environment and thrive in the harsh conditions of the mountains. "Tubers can store nutrients for cold adaptation, and enable asexual reproduction to meet the challenge of the reduced fertility in cold conditions. These allowed the plant to survive and rapidly expand," Huang said. The study's findings, according to the researchers, may help guide improved cultivated potato breeding to address environmental challenges that crops presently face due to factors such as climate change. There currently are roughly 5,000 potato varieties. The potato is the world's third most important food crop, after rice and wheat, for human consumption, according to the Peru-based International Potato Center research organization. China is the world's leading potato producer. "It always is hard to remove all the deleterious mutations in potato genomes in breeding, and this study opens a new door to make a potato free of deleterious mutations using the tomato as the chassis of synthetic biology," Huang said. The study also may open the door to generate a new crop species that could produce tomato fruit above ground and potato tubers below ground, according to Zhiyang Zhang, a postdoctoral researcher at the Chinese Academy of Agricultural Sciences. The potato and tomato are members of the nightshade family of flowering plants that also includes tobacco and peppers, among others. The study did not investigate the evolutionary origins of other tuberous root crops that originated in South America such as the sweet potato and yuca, which are members of different families of flowering plants. While the parts of the tomato and potato plants that people eat are quite different, the plants themselves are very similar. "We use different parts of these two species, fruits in tomatoes and tubers in potatoes," Knapp said. "If you look at the flowers or leaves, these are very similar. And if you are lucky enough to let your potato plant produce fruits, they look just like little green tomatoes. But don't eat them. They are not very nice."


The Independent
18 hours ago
- The Independent
The mystery of the first potatoes has finally been solved – and a tomato was involved
The potato, a global food staple first cultivated thousands of years ago in the Andes region of South America before its worldwide spread from the 16th century, has long presented a puzzling evolutionary mystery. Now, a new analysis has finally unravelled its origins. Scientists have revealed that the potato lineage emerged approximately nine million years ago in South America, through a natural interbreeding event between a wild tomato plant and a potato-like species. This significant discovery, based on the genomic analysis of 450 cultivated potatoes and 56 wild species, explains how this vital crop came to be. This ancient hybridisation event is understood to have led to the appearance of the nascent potato plant's distinctive tuber – the enlarged structure housing nutrients underground, according to the researchers. While the edible part of a tomato plant is its fruit, the potato's value lies in this subterranean growth. The study also identified two crucial genes involved in tuber formation, deepening our understanding of this essential crop. "Potatoes are truly one of humanity's most remarkable food staples, combining extraordinary versatility, nutritional value and cultural ubiquity in ways few crops can match," said Sanwen Huang, a genome biologist and plant breeder at the Chinese Academy of Agricultural Sciences and senior author of the study published on Friday in the journal Cell. "People eat potatoes using virtually every cooking method - baking, roasting, boiling, steaming and frying. Despite being stereotyped as carbohydrates, potatoes offer vitamin C, potassium, fiber and resistant starch, and are naturally gluten-free, low-fat and satiating - a nutrient-dense calorie source," Huang added. Resistant starch is a type of carbohydrate that resists digestion in the small intestine and ferments in the large intestine, feeding beneficial bacteria in the gut. The modern-day potato plant's scientific name is Solanum tuberosum. Its two parents identified in the study were plants that were the ancestors of a potato-like species now found in Peru named Etuberosum, which closely resembles the potato plant but lacks a tuber, and the tomato plant. These two plants themselves shared a common ancestor that lived about 14 million years ago, and were able to naturally interbreed when the fortuitous hybridization event occurred five million years after they had diverged from each other. "This event led to a reshuffling of genes such that the new lineage produced tubers, allowing these plants to expand into the newly created cold, dry habitats in the rising Andes mountain chain," said botanist Sandra Knapp of the Natural History Museum in London, a co-author of the study. This hybridization event coincided with the rapid uplift of the Andes. With a tuber, the potato plant was able to adapt to the changing regional environment and thrive in the harsh conditions of the mountains. "Tubers can store nutrients for cold adaptation, and enable asexual reproduction to meet the challenge of the reduced fertility in cold conditions. These allowed the plant to survive and rapidly expand," Huang said. The study's findings, according to the researchers, may help guide improved cultivated potato breeding to address environmental challenges that crops presently face due to factors such as climate change. There currently are roughly 5,000 potato varieties. The potato is the world's third most important food crop, after rice and wheat, for human consumption, according to the Peru-based International Potato Center research organization. China is the world's leading potato producer. "It always is hard to remove all the deleterious mutations in potato genomes in breeding, and this study opens a new door to make a potato free of deleterious mutations using the tomato as the chassis of synthetic biology," Huang said. The study also may open the door to generate a new crop species that could produce tomato fruit above ground and potato tubers below ground, according to Zhiyang Zhang, a postdoctoral researcher at the Chinese Academy of Agricultural Sciences. The potato and tomato are members of the nightshade family of flowering plants that also includes tobacco and peppers, among others. The study did not investigate the evolutionary origins of other tuberous root crops that originated in South America such as the sweet potato and yuca, which are members of different families of flowering plants. While the parts of the tomato and potato plants that people eat are quite different, the plants themselves are very similar. "We use different parts of these two species, fruits in tomatoes and tubers in potatoes," Knapp said. "If you look at the flowers or leaves, these are very similar. And if you are lucky enough to let your potato plant produce fruits, they look just like little green tomatoes. But don't eat them. They are not very nice."


BBC News
19 hours ago
- BBC News
Harper Adams University birdsong project expands in county
Technology that monitors birdsong as part of conservation efforts is to be rolled out across Green Box Project involves recordings via wireless boxes operated by solar panel. Recordings are uploaded to the cloud, where birds are then identified by is hoped the collected data could support conservation planning and contribute to national biodiversity databases."This idea of bioacoustics is something that people have been trying to implement in a box like this for a really long time," said Dr Joseph Mhango from the county's Harper Adams University which created the tech. "The artificial intelligence classifies what it's heard, and picks out specific birdsong... it's able to recognise what species of bird that is."Data scientists at Harper Adams will take over and analyse trends - what sort of migratory birds are coming to Shropshire over time, what sort of local species persist."The AI system was trained by real scientists, using millions of bird Shropshire Ornithological Society will host one of the sensors at its Venus Pool reserve near Shrewsbury."Ornithological surveys are vital for tracking changes in bird populations, which are often early indicators of broader environmental shifts," said Claire Mulvey, from the society. "The Green Box Project not only enhances our ability to monitor these changes but also fosters community engagement in conservation efforts."The boxes will record over the next couple of months, with the university releasing initial data at the end of September."We have set up pretty much a fleet of them… they will be continuously recording birdsong every single day," said Dr Mhango. Follow BBC Shropshire on BBC Sounds, Facebook, X and Instagram.