logo
Space photo of the week: Record-breaking James Webb telescope image captures 1,678 galaxy groups at once

Space photo of the week: Record-breaking James Webb telescope image captures 1,678 galaxy groups at once

Yahoo04-05-2025
When you buy through links on our articles, Future and its syndication partners may earn a commission.
What it is: Thousands of galaxy groups from the early universe
Where it is: 12 billion light-years away in the constellation Sextans
When it was shared: April 29, 2025
Why it's so special: Sitting across a part of the night sky that looks away from the Milky Way and into the distant universe, the constellation Leo, the lion, is known to astronomers as the realm of the galaxies. But when the James Webb Space Telescope (JWST) peered next to the lion, it revealed astounding new details. In the tiny constellation Sextans, JWST detected groups of galaxies up to 12 billion light-years away. The universe is 13.8 billion years old, so these galaxies date back to the universe's early years.
Just as gravity causes moons to orbit planets, planets to orbit stars and stars to orbit the centers of their galaxies, galaxies themselves orbit each other to create gravitationally bound groups, according to NASA. This largest-ever sample of 1,678 galaxy groups is helping astronomers figure out what the early universe was like and how it has changed over the past 12 billion years.
Related: Scientists spot a 'dark nebula' being torn apart by rowdy infant stars — offering clues about our own solar system's past
Galaxies that existed in the early universe had irregular shapes and formed lots of stars, while galaxies that formed later appear more symmetrical and structured, with elliptical and spiral galaxies — like our Milky Way.
"Like humans, galaxies come together and make families,' Ghassem Gozaliasl, a researcher in astronomy at Aalto University, head of the galaxy groups detection team and lead author of a study on the findings accepted for publication in the journal Astronomy and Astrophysics, said in a statement. "Groups and clusters are really important because within them galaxies can interact and merge together, resulting in the transformation of galaxy structure and morphology.' In these galaxies, astronomers can also study dark matter, supermassive black holes and the gas between galaxies.
RELATED STORIES
—Space photo of the week: Iconic 'Eagle Nebula' gets a major glow-up on Hubble's 35th anniversary
—James Webb telescope reveals truth about 'impossible' black hole thought to be feeding at 40 times the theoretical limit
—42 jaw-dropping James Webb Space Telescope images
NASA has a long history of turning its space telescopes to face the universe at large to take "deep field" images. The first was the Hubble Deep Field in 1995, which included about 3,000 distant galaxies. According to NASA, the installation of a new camera in 2002 enabled the even more impressive Hubble Ultra Deep Field in 2004, which revealed almost 10,000 galaxies, some existing when the universe was just 800 million years old. That was followed by the Hubble eXtreme Deep Field, which uncovered 5,500 galaxies up to 13.2 billion light-years away.
However, it didn't take long after its launch for JWST to better its optical forerunner, in 2022 delivering its first deep field of galaxy cluster SMACS 0723 as it appeared 4.6 billion years ago — one of the deepest, sharpest infrared images of the distant universe to date. JWST followed that up with a deep-field image of Pandora's Cluster in February 2023.
For more sublime space images, check out our Space Photo of the Week archives.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

What if we've been thinking about dark matter all wrong, scientist wonders
What if we've been thinking about dark matter all wrong, scientist wonders

Yahoo

timean hour ago

  • Yahoo

What if we've been thinking about dark matter all wrong, scientist wonders

When you buy through links on our articles, Future and its syndication partners may earn a commission. Dark matter could be made from tiny black holes formed when so-called "dark baryons" collapse, scientists suggest. Or, alternatively, dark matter could be a type of particle created by a form of Hawking radiation on the cosmic horizon. Here's what all that means. Dark matter is the substance that appears to make up about 27% of our universe, compared to the 5% of our universe composed of "normal" matter. Scientists certainly know dark matter exists due to some peculiar effects observed in the cosmos that normal matter can't account for. However, nobody knows what dark matter is made of. For decades, the leading candidate has been WIMPs, or Weakly Interacting Massive Particles. But as the search for WIMPs begins to falter with experiments continuing to turn up empty handed, new theories of dark matter are starting to surface. Among them are two new models developed by Stefano Profumo, who is a professor of theoretical physics at the University of California, San Diego — and his ideas take a very different view of the dark-matter problem. "My attitude is that we've tried very hard to think about dark matter as a particle, but it hasn't worked out so far," Profumo told "I think it's natural to take a break and look at the whole thing from a distance, and wonder whether we are fundamentally thinking about this in the wrong way." In one paper, Profumo considers whether the "dark sector" could be what gives birth to dark matter. By dark sector, he isn't referring to how our universe is governed by dark matter and dark energy. Instead, he's referring to a kind of "mirror world" of particles that interact via forces that our world's kind of matter does not experience. Profumo says the concept is not as strange as it may sound. For example, he highlights how the quarks inside protons and neutrons are bound together by the strong nuclear force. "But then take electrons, which are absolutely blind to the strong force. They don't feel it at all. For them the strong force is a dark sector," said Profumo. "It's common in the Standard Model." Dark baryons would be the equivalent of protons or neutrons in this dark sector, except that they could contain more than three quarks, Profumo says, and therefore be more massive. The next step in the researcher's theory was inspired by his teenage son asking whether a sufficiently massive particle could collapse under its own gravity to form a mini black hole. The dark baryons in the dark sector, if it so exists, could be massive enough to do just that — and these tiny black holes could then be rife in the universe and collectively form what we call dark matter. "I've worked with people who have thought very deeply about a dark-sector equivalent to the strong force, but they've never really pushed all the way to the black hole frontier," said Profumo. "But I really think it is a possibility that we need to take into consideration." Black holes, large or small, are surrounded by an invisible boundary called the event horizon, inside which gravity is so strong that not even light can escape. However, the event horizon is 'hot' – particles created at the boundary by quantum effects can radiate away as what we call Hawking radiation (named for famous physicist Stephen Hawking, who is credited with the idea). Over time, Hawking radiation removes mass and energy from a black hole, causing it to gradually evaporate. For supermassive black holes, this would take an unimaginably long time — 10^100 years at least. However, black holes on the smallest scales — what we call the Planck scale —- can evaporate in an amount of time less than the age of the universe. However, if we make certain assumptions about the nature of these black holes formed by the collapse of dark baryons, then their Hawking radiation could become suppressed, preventing them from evaporating and enabling them to act as dark matter. Meanwhile, Profumo's other idea plays on the concept of Hawking radiation as well, but in a completely novel way. We live in a universe that is expanding at an accelerating rate, taking regions of the cosmos so far away that their light will never reach us. This leads to a boundary, or a cosmic horizon, which defines the edge of the visible universe. There could be much more of the universe beyond this horizon, but we will never see it. Now, let's go back in time to the moment of the Big Bang. The universe began with a burst of expansionist energy known as inflation. This inflationary period lasted a tiny fraction of a second. However, some models also posit that there was a second brief burst of expansionary energy that followed inflation. "It is basically a period of mini-inflation," said Profumo. "It could be associated with inflation and how it ends, or it could be driven by a similar set-up to inflation." This second expansionary period created cosmic horizons like the cosmic horizon that borders the visible universe today. However, the visible universe today is 93 billion light-years across, with Earth at its center (the concept of a "visible" universe is very observer dependent — observers in different parts of the cosmos will see a different volume of observable universe centered around themselves). The vast size of the visible universe means the temperature at the cosmic horizon is very low because space itself has become so spread out. However, during the second burst of inflation, the universe was still incredibly compact and the temperature at the horizon was extremely hot. Profumo realized these early cosmic horizons could act like event horizons; indeed, the concept is a bit like a black hole but turned inside-out because everything beyond the cosmic horizon is forever disconnected from us, just like everything inside a black hole's event horizon is separated from us. And just as Hawking radiation is emitted from a black hole's event horizon, Profumo suggests the cosmic horizon could also experience Hawking radiation in the same manner, and that the energy of this radiation could transform into some kind of dark matter particle. "Maybe [dark matter] is as simple as that," said Profumo. "Early on, the universe behaved like a black hole, and there was stuff sprinkled into the universe because the universe was evaporating in the same way that a black hole evaporates." This might seem somewhat arbitrary, because the location of the cosmic horizon depends upon the location of the observer. However, because the universe is homogenous (the same at every point on large scales) and isotropic (the same in all directions) — two truisms that we call the Cosmological Principle —- then any two observers should see the exact same amount of dark matter, wherever they are. Profumo isn't necessarily saying dark matter has to be one of these two possibilities; indeed, the fact that he has developed two theories implies that he's reluctant to nail his colors to any particular mast. "The aim of the game is to understand the breadth and scope of what dark matter could be, and to cast the net as wide as possible," said Profumo. RELATED STORIES — What is dark matter? — 'Dark matter is more valuable than gold': Wobbly galaxies help shine a light on the universe's strangest stuff — Captured dark matter may transform some 'failed stars' into 'dark dwarfs' All we know for sure about dark matter is that it interacts via gravity, and yet despite its mystery it is utterly dominant in how matter in the universe assembles itself into galaxies. Almost a century since Fritz Zwicky first suggested the existence of dark matter, and about half a century since Vera Rubin confirmed the need for dark matter in our universe, we still don't know anything more about it. Experiments can narrow down dark matter's properties, so the more ideas we have on the table, the more likely it is that we will be able to match one of them up to the observed properties of dark matter. Profumo's dark sector–black hole hypothesis was published on May 9 in Physical Review D, and his cosmic horizon model was published in the same journal on July 8. Solve the daily Crossword

NASA seeks student entries for Human Exploration Rover Challenge
NASA seeks student entries for Human Exploration Rover Challenge

UPI

time7 hours ago

  • UPI

NASA seeks student entries for Human Exploration Rover Challenge

Aug. 15 (UPI) -- NASA is accepting contest entries from student teams to design, build and test rovers on the moon and Mars. In the Human Exploration Rover Challenge, students need to make models that are capable of going over a course while completing tasks for future Artemis missions, NASA said in a news release. In the challenge, teams design projects that sample of soil, water and air over a half-mile course with a simulated field of asteroid debris, boulders, erosion ruts, crevasses and an ancient streambed. There are remote-controlled and human-powered divisions. In the human one, teams will play the role of two astronauts in a lunar vehicle. They must use a custom-built tool to manually collect samples. In remote-controlled, they will provide pressurized rovers, which will contain the necessary tools to collect and test samples onboard. "NASA's Human Exploration Rover Challenge creates opportunities for students to develop the skills they need to be successful STEM professionals," Vemitra Alexander, the activity lead for the challenge at NASA's Marshall Space Flight Center in Huntsville, Ala., said. "This challenge will help students see themselves in the mission and give them the hands-on experience needed to advance technology and become the workforce of tomorrow." Entries will be accepted until Sept. 15 and the 32nd annual winners will be announced at an in-person event April 9-11, 2026, at the U.S. Space & Rocket Center near NASA Marshall. Since the program began in 1994, more than 15,000 have participated in the Rover Challenge. Many students now work at NASA or in the aerospace industry. In the 2025 contest, more than 500 students participated, representing 35 colleges and universities, 38 high schools, and two middle schools in 20 states, Puerto Rico and 16 nations. "Last year, we saw a lot of success with the debut of our remote-controlled division and the addition of middle school teams," Alexander said. "We're looking forward to building on both our remote-controlled and human-powered divisions with new challenges for the students, including rover automation." The Artemis II is scheduled to reach the moon no earlier than April 26, and a crewed Artemis III is planned for mid-2027 aboard the Orion spacecraft. The last time humans landed on the moon was 1972 on Apollo 17.

James Webb Space Telescope uncovers 300 mysteriously luminous objects. Are they galaxies or something else?
James Webb Space Telescope uncovers 300 mysteriously luminous objects. Are they galaxies or something else?

Yahoo

time8 hours ago

  • Yahoo

James Webb Space Telescope uncovers 300 mysteriously luminous objects. Are they galaxies or something else?

When you buy through links on our articles, Future and its syndication partners may earn a commission. Hundreds of unexpectedly energetic objects have been discovered throughout the distant universe, possibly hinting that the cosmos was far more active during its infancy than astronomers once believed. Using deep-field images from NASA's James Webb Space Telescope (JWST), researchers at the University of Missouri identified 300 unusually bright objects in the early universe. While they could be galaxies, astronomers aren't yet sure what they are for certain. Galaxies forming so soon after the Big Bang should be faint, limited by the pace at which they could form stars. Yet these candidates shine far brighter than current models of early galaxy formation predict. "If even a few of these objects turn out to be what we think they are, our discovery could challenge current ideas about how galaxies formed in the early universe — the period when the first stars and galaxies began to take shape," Haojing Yan, co-author of the study, said in a statement from the university. To discover these objects, the team applied a method called the "dropout" technique, which detects objects that appear in redder wavelengths but vanish in bluer, shorter-wavelength images. This indicates the objects are extremely distant, showing the universe as it was more than 13 billion years ago. To estimate distances, the team analyzed the objects' brightnesses across multiple wavelengths to infer redshift, age and mass. JWST's powerful Near-Infrared Camera and Mid-Infrared Instrument are designed to detect light from the farthest reaches of space, making them ideal for studying the early universe. "As the light from these early galaxies travels through space, it stretches into longer wavelengths — shifting from visible light into infrared," Yan said in the statement. "This stretching, called redshift, helps us determine how far away these galaxies are. The higher the redshift, the closer the galaxy is to the beginning of the universe." Next, the researchers hope to use targeted spectroscopic observations, focusing on the brightest sources. Confirming the newly found objects as genuine early galaxies would refine our current understanding of how quickly the first cosmic structures formed and evolved — and add to the growing list of transformative discoveries made by the JWST since it began observing the cosmos in 2022. The findings were published June 27 in The Astrophysical Journal. Solve the daily Crossword

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store