logo
World's largest solar telescope shows off its full force with new image

World's largest solar telescope shows off its full force with new image

Yahoo24-04-2025

The record-breaking Daniel K. Inouye Solar Telescope (DKIST) has captured another stunningly close look at the surface of our sun. DKIST has collected incredibly detailed images of the sun from its perch on the Haleakalā volcano in Maui since 2022, but the largest observational tool of its kind only managed its latest look thanks to a recent major milestone described as its 'technical first light.' Using its newly installed spectro-polarimeter visible tuner filter (VTF), DKIST has offered a stunningly close look at the sun's surface photosphere featuring a gigantic sunspot.
'The instrument is, so to speak, the heart of the solar telescope, which is now finally beating at its final destination,' VTF project scientist Matthias Schubert said in a statement.
VTF's primary goal is to image the sun at the absolute highest spatial, spectral, and temporal resolutions possible. Doing so will help experts gain a better understanding of the sun's dynamic and complex behaviors, particularly the powerful particles, solar energy, and stellar radiation it ejects across the solar system. These solar storms routinely produce colorful atmospheric auroras on Earth, but especially intense events can wreak havoc on satellites and global communications systems. Studying the sun's photosphere and chromosphere will allow researchers to examine how plasma flows and shifting magnetic fields interact to trigger surface eruptions.
DKIST's VTF is specifically designed to help determine attributes like magnetic field strength, temperature, pressure, and plasma flow velocity. It is a massive addition to what is already a giant observational installation. At around the size of a small garage, the 5.6 ton instrument occupies two floors at the National Solar Observatory.
The VTF was developed and constructed at Germany's Institute for Solar Physics over the last 15 years—nearly as long as the time spent on DKIST itself. The painstaking installation process began at the beginning of 2024, and took months of work to complete before it could be utilized for the first time.
VTF's first public image also showcases one of our star's ever-changing sunspots, which are linked to comparatively strong magnetic fields that prevent plasma from escaping the star's interior. To record the event, the VTF relied on sunlight with a wavelength of 588.9 nanometers, and also depicts the sunspot's penumbra over a region measuring approximately 15,535-square-miles.
'The Inouye Solar Telescope was designed to study the underlying physics of the Sun as the driver of space weather,' said Christoph Keller, Director of the National Solar Observatory, which is responsible for operating DKIST. 'In pursuing this goal, the Inouye is an ideal platform for an unprecedented and pioneering instrument like the VTF.'

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Huge planet discovered orbiting tiny star puzzles scientists
Huge planet discovered orbiting tiny star puzzles scientists

Yahoo

timea day ago

  • Yahoo

Huge planet discovered orbiting tiny star puzzles scientists

Astronomers announced Wednesday they have discovered a massive planet orbiting a tiny star, a bizarre pairing that has stumped scientists. Most of the stars across the Milky Way are small red dwarfs like TOI-6894, which has only 20 percent the mass of our Sun. It had not been thought possible that such puny, weak stars could provide the conditions needed to form and host huge planets. But an international team of astronomers have detected the unmistakable signature of a gas giant planet orbiting the undersized TOI-6894, according to a study in the journal Nature Astronomy. This makes the star the smallest star yet known to host a gas giant. The planet has a slightly larger radius than Saturn, but only half its mass. It orbits its star in a little over three days. The astronomers discovered the planet when searching through more than 91,000 low-mass red dwarfs observed by NASA's TESS space telescope. Its existence was then confirmed by ground-based telescopes, including Chile's Very Large Telescope. "The fact that this star hosts a giant planet has big implications for the total number of giant planets we estimate exist in our galaxy," study co-author Daniel Bayliss of the UK's Warwick University said in a statement. Another co-author, Vincent Van Eylen, of University College London, said it was an "intriguing discovery". "We don't really understand how a star with so little mass can form such a massive planet!" he said. "This is one of the goals of the search for more exoplanets. By finding planetary systems different from our solar system, we can test our models and better understand how our own solar system formed." - How do you make a planet? - The most prominent theory for how planets form is called core accretion. The process begins when a ring of gas and dust -- called a protoplanetary disc -- which surrounds a newly formed star builds up into a planetary core. This core attracts more gas that forms an atmosphere, eventually snowballing into a gas giant. Under this theory, it is difficult for low-mass stars to host giant planets because there is not enough gas and dust to begin building a core in the first place. A rival theory proposes that these planets instead form when their protoplanetary disc becomes gravitationally unstable and breaks up, with the collapsing gas and dust forming a planet. However neither theory seems to explain the existence of the newly discovered planet, TOI-6894b, the researchers said. The planet also interests scientists because it is strangely cold. Most of the gas giants discovered outside our Solar System so far have been what are known as "hot Jupiters", where temperatures soar well over 1,000 degrees Celsius. But the newly discovered planet appears to be under 150C, the researchers said. "Temperatures are low enough that atmospheric observations could even show us ammonia, which would be the first time it is found in an exoplanet atmosphere," said study co-author Amaury Triaud of Birmingham University. The James Webb space telescope is scheduled to turn its powerful gaze towards the planet in the next year, which could help uncover some more mysteries of this strange planet. ber-dl/srg/phz

Sharpest View of the Sun Reveals Magnetic Stripes the Size of Manhattan
Sharpest View of the Sun Reveals Magnetic Stripes the Size of Manhattan

Gizmodo

timea day ago

  • Gizmodo

Sharpest View of the Sun Reveals Magnetic Stripes the Size of Manhattan

Scientists used the world's largest solar telescope to capture incredibly detailed images of the Sun's surface, revealing ultra-fine magnetic stripes rippling across the star and magnetic fields that resemble fluttering curtains, which modify light. The Daniel K. Inouye Solar Telescope stands tall at 13 feet (4 meters) atop a volcano in Maui, Hawaii, staring at our host star with great intensity. Using the telescope's unique capabilities, a team led by scientists from the National Science Foundation (NSF) observed ultra-narrow bright and dark stripes on the solar photosphere at an unprecedented level of detail. The recent observations, published in The Astrophysical Journal Letters, offer new insight into how the Sun's magnetic fields shape the dynamics at its surface and affects space weather. The stripes, called striations, ripple across the walls of solar granules—convection cells in the Sun's photosphere where hot gas rises from inside the star to reach the surface. They're around 12 miles wide (20 kilometers), roughly the length of Manhattan, which is tiny compared to the monstrous size of the Sun. The striations are the result of curtain-like sheets of magnetic fields that ripple and shift across the surface of the Sun. As light from the granule walls passes through these fields, it appears to flutter and alternate between brightness and darkness. This variation is an indication of the underlying magnetic field, which appears dark when it's weaker and bright when it's relatively stronger. 'These striations are the fingerprints of fine-scale magnetic field variations,' David Kuridze, a scientist at the National Solar Observatory and the study's lead author, said in a statement. The team behind the study used the Inouye telescope's Visible Broadband Imager instrument, which operates in a specific range of visible light, called the G-band, that highlights areas with strong magnetic activity. Scientists then compared the telescope's images with simulations that recreate the physics of the Sun's surface, finding them to be in agreement. 'Magnetism is a fundamental phenomenon in the universe, and similar magnetically induced stripes have also been observed in more distant astrophysical objects, such as molecular clouds,' Han Uitenbroek, NSO scientist and co-author of the study, said in a statement. 'Inouye's high resolution, in combination with simulations, allows us to better characterize the behavior of magnetic fields in a broad astrophysical context.' Located approximately 93 million miles (149 million kilometers) from Earth, the Sun has been holding our solar system together with its gravity for nearly five billion years, and yet there is still so much we don't know about our host star. By studying the magnetic architecture of the solar surface, scientists are hoping to understand the physics behind solar eruptions, flares, and coronal mass ejections so that they can better predict space weather. The Sun is currently at solar maximum, a period of heightened activity in its 11-year cycle which is marked by intense flareups that can sometimes be directed toward Earth. On May 10, 2024, a G5 magnetic storm—classified as extreme—hit Earth as a result of large expulsions of plasma from the Sun's corona. The G5 storm, the largest in more than 20 years, caused some deleterious effects on Earth's power grid and some spectacular auroras seen across much of the globe. The storm also increased atmospheric density in low Earth orbit by up to an order of magnitude, which in turn caused atmospheric drag that affected satellites.

James Webb telescope spots the earliest galaxy ever recorded
James Webb telescope spots the earliest galaxy ever recorded

Yahoo

timea day ago

  • Yahoo

James Webb telescope spots the earliest galaxy ever recorded

The James Webb Space Telescope spotted the earliest galaxy ever recorded. Looking through space is also looking through time: We see objects as they were when the light left them, so when we look at the Sun, we see it as it was eight minutes ago. Newly discovered galaxy MoM z14, which lies a mere 13.53 billion light years away, is also the most distant object ever sighted, so it appears as it was just 280 million years after the Big Bang, when the universe was only 2% of its current age. As well as being an impressive technical feat, the discovery challenges physicists' models of galaxy formation, implying that they formed more quickly than previously believed.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store