logo
Brain Implant Lets Man with ALS Speak and Sing with His ‘Real Voice'

Brain Implant Lets Man with ALS Speak and Sing with His ‘Real Voice'

Yahoo13-06-2025
A man with a severe speech disability is able to speak expressively and sing using a brain implant that translates his neural activity into words almost instantly. The device conveys changes of tone when he asks questions, emphasizes the words of his choice and allows him to hum a string of notes in three pitches.
The system — known as a brain–computer interface (BCI) — used artificial intelligence (AI) to decode the participant's electrical brain activity as he attempted to speak. The device is the first to reproduce not only a person's intended words but also features of natural speech such as tone, pitch and emphasis, which help to express meaning and emotion.
In a study, a synthetic voice that mimicked the participant's own spoke his words within 10 milliseconds of the neural activity that signalled his intention to speak. The system, described today in Nature, marks a significant improvement over earlier BCI models, which streamed speech within three seconds or produced it only after users finished miming an entire sentence.
[Sign up for Today in Science, a free daily newsletter]
'This is the holy grail in speech BCIs,' says Christian Herff, a computational neuroscientist at Maastricht University, the Netherlands, who was not involved in the study. 'This is now real, spontaneous, continuous speech.'
The study participant, a 45-year-old man, lost his ability to speak clearly after developing amyotrophic lateral sclerosis, a form of motor neuron disease, which damages the nerves that control muscle movements, including those needed for speech. Although he could still make sounds and mouth words, his speech was slow and unclear.
Five years after his symptoms began, the participant underwent surgery to insert 256 silicon electrodes, each 1.5-mm long, in a brain region that controls movement. Study co-author Maitreyee Wairagkar, a neuroscientist at the University of California, Davis, and her colleagues trained deep-learning algorithms to capture the signals in his brain every 10 milliseconds. Their system decodes, in real time, the sounds the man attempts to produce rather than his intended words or the constituent phonemes — the subunits of speech that form spoken words.
'We don't always use words to communicate what we want. We have interjections. We have other expressive vocalizations that are not in the vocabulary,' explains Wairagkar. 'In order to do that, we have adopted this approach, which is completely unrestricted.'
The team also personalized the synthetic voice to sound like the man's own, by training AI algorithms on recordings of interviews he had done before the onset of his disease.
The team asked the participant to attempt to make interjections such as 'aah', 'ooh' and 'hmm' and say made-up words. The BCI successfully produced these sounds, showing that it could generate speech without needing a fixed vocabulary.
Using the device, the participant spelt out words, responded to open-ended questions and said whatever he wanted, using some words that were not part of the decoder's training data. He told the researchers that listening to the synthetic voice produce his speech made him 'feel happy' and that it felt like his 'real voice'.
In other experiments, the BCI identified whether the participant was attempting to say a sentence as a question or as a statement. The system could also determine when he stressed different words in the same sentence and adjust the tone of his synthetic voice accordingly. 'We are bringing in all these different elements of human speech which are really important,' says Wairagkar. Previous BCIs could produce only flat, monotone speech.
'This is a bit of a paradigm shift in the sense that it can really lead to a real-life tool,' says Silvia Marchesotti, a neuroengineer at the University of Geneva in Switzerland. The system's features 'would be crucial for adoption for daily use for the patients in the future.'
This article is reproduced with permission and was first published on June 11, 2025.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Promising vaccine may prevent certain cancers from returning
Promising vaccine may prevent certain cancers from returning

The Hill

time4 hours ago

  • The Hill

Promising vaccine may prevent certain cancers from returning

An experimental cancer vaccine has shown promising results in keeping pancreatic and colorectal cancers from coming back. In a clinical trial led by the Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, researchers tested the vaccine on 25 patients who had previously been treated for pancreatic and colorectal cancers. Colorectal cancer is the third most common cancer diagnosed in both men and women in the United States, according to the American Cancer Society, and pancreatic cancer accounts for about 3 percent of all cancers in the country. Researchers found that the vaccine, named ELI-002 2P, could trigger lasting immune responses and may help prevent or delay cancer recurrence in high-risk patients whose tumors are driven by KRAS mutations, which are responsible for half of colorectal cancers and more than 90 percent of pancreatic cancers, researchers noted. When they followed up with patients after more than a year, they found the average relapse-free survival was 16 months and the average overall survival was 28 months — both exceeding historical norms — with the greatest benefit seen in patients who developed strong mKRAS-specific T cell responses after getting the vaccine. Dr. Thomas Marron, an oncologist who was not involved with the study, told NewsNation the results are 'extremely promising,' as both cancers typically have a high risk of recurrence. 'This vaccine is about teaching patients' immune systems how to recognize and attack those tiny amounts of cancer cells so that they keep them from coming back, increasing the likelihood that we can cure patients with surgery and chemotherapy or radiation,' Marron said. Marron said UCLA's vaccine could become available within the coming years.

Breakthrough study finds deficiency of this common nutrient could contribute to Alzheimer's
Breakthrough study finds deficiency of this common nutrient could contribute to Alzheimer's

Yahoo

time6 hours ago

  • Yahoo

Breakthrough study finds deficiency of this common nutrient could contribute to Alzheimer's

A deficiency of the metal lithium in the body could be a key factor contributing to the development of dementia in Alzherimer's patients, a groundbreaking new study reveals. The decade-long research, published in the journal Nature, shows for the first time that lithium occurs naturally in the brain and maintains the normal function of all its major cell types, preventing nerves from degradation. Scientists from Harvard Medical School found that lithium loss in the human brain is one of the earliest changes leading to Alzheimer's, while in mice, a similar lithium depletion accelerated memory decline. A reduced lithium level was found in some cases due to the metal's impaired uptake and its binding to amyloid plaques, which are known to be smoking gun signs of Alzheimer's. Researchers also showed that a new type of lithium compound – lithium orotate – can avoid capture by amyloid plaques and restore memory in mice. In the study, scientists used an advanced type of mass spectroscopy chemical analysis method to measure trace levels of about 30 different metals in the brain and blood samples from a range of people, including cognitively healthy people, those in an early stage of dementia, and those with advanced Alzheimer's. The analysis revealed that lithium was the only metal with markedly different levels across groups, which also seemed to change at the earliest stages of memory loss. 'Lithium turns out to be like other nutrients we get from the environment, such as iron and vitamin C,' study senior author Bruce Yankner said. 'It's the first time anyone's shown that lithium exists at a natural level that's biologically meaningful without giving it as a drug,' Dr Yankner said. Although lithium compounds have been historically in use to treat a range of mental conditions like bipolar disorder and major depressive disorder, in these cases, they are given at much higher concentrations that could even be toxic to older people. Scientists have now found that lithium orotate is effective at one-thousandth this dose – enough to mimic the natural level of lithium in the brain. The latest findings with lithium orotate, however, needs to be confirmed in humans via clinical trials. Yet, researchers suspect that measuring lithium levels could help screen people for early Alzheimer's. The findings revise the theory of Alzheimer's disease, which affects nearly 400 million people worldwide, offering a new strategy for early diagnosis, prevention, and treatment. Decades of studies have shown that Alzheimer's disease involves an array of brain abnormalities, including clumps of the protein amyloid beta, tangles of the protein tau, and a loss of the brain's protective protein REST. However, these abnormalities have never fully explained the condition. For instance, it remains unclear why some people with Alzheimer's-like changes in the brain never go on to develop dementia or cognitive decline. Recent treatments developed to target amyloid beta plaques also don't seem to reverse memory loss, only modestly reducing the rate of cognitive decline. Now, scientists say lithium could be the critical missing link. 'The idea that lithium deficiency could be a cause of Alzheimer's disease is new and suggests a different therapeutic approach,' Dr Yankner said. 'You have to be careful about extrapolating from mouse models, and you never know until you try it in a controlled human clinical trial... But so far the results are very encouraging,' he added.

Italy's Ventina glacier has melted so much geologists now can only monitor it remotely

time10 hours ago

Italy's Ventina glacier has melted so much geologists now can only monitor it remotely

ROME -- Italy's Ventina glacier, one of the biggest in northern Lombardy, has melted so much due to climate change that geologists can no longer measure it the way they have for the past 130 years. After this year's hot summer, geologists discovered that the simple stakes used as benchmarks to measure the glacier's retraction each year are now buried under rockslides and debris that have made the terrain too unsteady for future in-person visits. The Lombardy Glaciological Service said Monday that it will now use drone imagery and remote sensing to keep track of the ongoing shrinkage. Geologists say that the Ventina glacier has already lost 1.7 kilometers (1 mile) in length since the first measuring benchmarks were positioned at the front of the glacier in 1895. The melting has accelerated in recent years, with the glacier losing 431 meters (471 yards) in the last 10 years, nearly half of that since 2021, the service said. It's another example of how accelerating global warming is melting and shrinking Europe's glaciers, causing a host of environmental and other impacts. 'While we could still hope until the 1980s that there would be normal cycles (of retraction) or at least a contained retraction, in the last 40 years something truly striking has occurred,' said Andrea Toffaletti, a member of the Lombardy Glaciological Service. Italy's mountain glaciers, which are found throughout the Alps and Dolomites in the north and along the central Apennines, have been receding for years, thanks to inadequate snowfall in the winter and record-setting hot summers. Glaciers always melt some in summer, with the runoff fueling mountain streams and rivers. But the hot summers are 'no longer able to guarantee the survival of the winter snowpack,' that keeps the glacier intact, Toffaletti said. 'In order to regenerate and remain in balance, a certain amount of residual snow from the winter must remain on the glacier's surface at the end of the summer. And this is happening less and less frequently,' said Toffaletti. According to the Lombardy service, the Alps represent a climate hotspot, recording double the global average of temperature increases since pre-industrial times, resulting in the loss of over 64% of the volume of Alpine glaciers. In February, the journal Nature reported on a study showing the world's glaciers lost ice at the rate of about 255 billion tons (231 billion metric tons) annually from 2000 to 2011, but that quickened to about 346 billion tons (314 billion metric tons) annually over about the next decade.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store