logo
Webb captures Jupiter's surprisingly active Northern Lights

Webb captures Jupiter's surprisingly active Northern Lights

Yahoo16-05-2025

A fresh look at Jupiter's powerful auroras with the James Webb Space Telescope has revealed never-before-seen details, and has uncovered a strange mystery for researchers to solve.
On Christmas Day in 2023, a team of astronomers aimed the sensitive Webb Telescope at the largest planet in our solar system. Although this had been done before, they had a very specific target in mind — the intense auroras that surround the immense planet's magnetic north pole.
While these Jovian Northern Lights had been imaged in the past, using the Hubble Space Telescope, Webb provided them with an unprecedented view, capturing the details of this phenomenon like never before.
Jupiter's auroras (left) captured by the James Webb Space Telescope's NIRCam (Near-Infrared Camera) on Dec. 25, 2023. The image on the right shows the planet Jupiter to indicate the location of the observed auroras, which was originally published in 2023. (NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI), Jonathan Nichols (University of Leicester), Mahdi Zamani (ESA/Webb))
"What a Christmas present it was — it just blew me away!" Jonathan Nichols, the lead researcher of this study from the University of Leicester, said in a NASA press release.
Auroras on Earth — the Northern Lights and Southern Lights — occur as high-energy particles from the Sun stream past the planet, either flowing on the solar wind or from massive eruptions of solar matter, known as coronal mass ejections (CMEs), sweeping by us.
These particles are captured by our planet's geomagnetic field and funnelled down into the upper atmospehre. There, they collide with atoms and molecules of oxygen and nitrogen in the air, passing on their energy. The energized oxygen and nitrogen then release that energy as coloured flashes of light — greens and reds from oxygen, and mostly blue from nitrogen.
The Northern Lights, spotted near Guelph, ON, on September 16, 2024. (Stormhunter Mark Robinson)
This same process occurs on Jupiter, but with an additional source of high energy charged particles.
While the planet's intense magnetic field captures particles from the solar wind and CMEs, it also picks up ionized particles from the innermost of its four largest moons.
Io is the most volcanically active object in the solar system. Hundreds of volcanoes dot its surface, which are powered by the tidal stretching and squeezing induced by the gravitational 'tug-of-war' the moon endures as it orbits the planet and periodically passes by its neighbours, Europa and Ganymede.
Io, imaged by NASA's Juno spacecraft during its 57th pass around Jupiter. The combinations of blemished and smooth terrain on the surface is due to nearly constant volcanic activity. (NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill)
Jupiter's magnetic field acts like a particle accelerator, driving this combination of solar and volcanic ions down into the planet's upper atmosphere so they hit the atoms and molecules there at tremendous speeds. As a result, Jupiter's auroras glow extremely brightly.
Since the process of producing auroras also generates heat, aka infrared light, Jovian auroras show up very brightly to Webb, which is specifically designed to capture that part of the spectrum of light. This allowed the researchers to get a very detailed view of the auroras, and spot how they changed with time.
What they saw over the course of their observations surprised them.
"We wanted to see how quickly the auroras change, expecting them to fade in and out ponderously, perhaps over a quarter of an hour or so," Nichols explained. "Instead, we observed the whole auroral region fizzing and popping with light, sometimes varying by the second."
Three different views of Jupiter's auroras are shown here from Dec. 25, 2023, superimposed on an earlier JWST image of the planet. (NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI), Jonathan Nichols (University of Leicester), Mahdi Zamani (ESA/Webb))
Jupiter's auroras also produce a rare type of hydrogen known as the trihydrogen cation. Normal hydrogen gas is composed of two hydrogen atoms, thus there are two protons in the nucleus, which are surrounded by two electrons. In a trihydrogen cation, there are three protons surrounded by two electrons, which causes it to be positively charged.
It was this very specific molecule that Nichols and his team were able to focus Webb onto, to gather the data for their study.
According to NASA, detecting the emissions from these trihydrogen cations will help scientists understand how the upper atmosphere of Jupiter heats and cools.
There was one odd thing that Nichols' team noticed in their observations.
Auroras show up in various colours across the spectrum of visible light, such as green, red, and blue. However, when we use telescopes to see auroras on Jupiter, we only see them in infrared and ultraviolet wavelengths. In this case, JWST handled the infrared observations, while another telescope provided the ultraviolet view.
"What made these observations even more special is that we also took pictures simultaneously in the ultraviolet with NASA's Hubble Space Telescope," Nichols explained.
Comparing the images from opposite ends of the spectrum is where a mystery popped up. The assumption was that the brightest regions in both UV and IR light should match up. However, they didn't.
"Bizarrely, the brightest light observed by Webb had no real counterpart in Hubble's pictures," Nichols said. "This has left us scratching our heads. In order to cause the combination of brightness seen by both Webb and Hubble, we need to have a combination of high quantities of very low-energy particles hitting the atmosphere, which was previously thought to be impossible. We still don't understand how this happens."
The difference might be due to the abundance of particles from the Sun versus the abundance of volcanic particles from Io. Or, there may be something else going on here that they haven't accounted for.
According to NASA, the research team plans on delving deeper into their comparison between the Webb and Hubble data they collected. They also plan on making further observations with Webb, which can be compared with data from the Juno spacecraft currently orbiting Jupiter.
Click here to view the video

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

60 years ago, Ed White went out for walk
60 years ago, Ed White went out for walk

Yahoo

time31 minutes ago

  • Yahoo

60 years ago, Ed White went out for walk

When you buy through links on our articles, Future and its syndication partners may earn a commission. On this day (June 3) 60 years ago, a NASA astronaut stepped outside his Gemini spacecraft and made history as the first American to perform an extavehicular activity (EVA), or spacewalk. NASA astronaut Edward H. White II left his Gemini 4 capsule and crew mate Jim McDivitt for a 20-minute spacewalk on June 3, 1965. It was only the second extravehicular activity (EVA) ever made (the first was by Soviet-era cosmonaut Alexei Leonov a few months earlier) and the first by an American. White brought with him a camera and a small jet pack; the latter did not work very well. He was connected to his spacecraft by an umbilical. Gemini 4 entered an orbit about Earth between 103 and 180 miles (165 and 289 kilometers) in altitude. During the spacewalk, White was in radio contact with ground controllers in Hawaii and Houston. There are other, better-composed photos of White on the same historic spacewalk, but this one can be used to illustrate one of, if not the most important lesson NASA learned from his EVA: They did not know how yet to spacewalk. White floated well enough, but he had no real control of his movements, even with a prototype handheld jet pack. There were no handrails for him to use on the outside of the Gemini capsule, and he had not trained in neutral buoyancy underwater — the best analog for the conditions in the vacuum of space. Still, even with the troubles he encountered, White called the end of his EVA the "saddest moment" of his life. You can read more about the history and basics of spacewalking and learn more about Ed White's Gemini 4 EVA.

Is this the end of the world? How a galactic pile-up could bring Earth's violent finish: Cosmic ‘coin flip'
Is this the end of the world? How a galactic pile-up could bring Earth's violent finish: Cosmic ‘coin flip'

Yahoo

time31 minutes ago

  • Yahoo

Is this the end of the world? How a galactic pile-up could bring Earth's violent finish: Cosmic ‘coin flip'

Forget killer asteroids and nuclear annihilation — Earth's ultimate fate may hinge on a cosmic coin toss. Astronomers have revealed that our Milky Way galaxy has a 50/50 chance of colliding with its massive neighbor, the Andromeda galaxy, sometime in the next 10 billion years — an intergalactic smash-up that could fling our solar system into deep space or swallow Earth whole. Cue the sci-fi panic — or not. 'It used to appear destined to merge with Andromeda forming a colossal 'Milkomeda,'' said Professor Alis Deason, a computational cosmologist at Durham University, per The Daily Mail. 'Now, there is a chance that we could avoid this fate entirely.' In other words: The end of the world may not be as inevitable as we thought — at least not from the galaxy next door. The new study, published in 'Nature Astronomy,' analyzed 100,000 simulations of the Milky Way's future. The findings — thanks to refined data from NASA's Hubble Space Telescope and the European Space Agency's Gaia mission — dramatically downshifted previous predictions of a guaranteed galactic pile-up in just 5 billion years. 'In short, the probability went from near-certainty to a coin flip,' lead author Dr. Till Sawala, of the University of Helsinki, revealed to The findings factor in the gravitational tug of neighboring galaxies — most notably the Large Magellanic Cloud, a much smaller satellite galaxy whose pull may be yanking the Milky Way off a crash course. 'The main difference between our research and previous studies is that we benefited from newer and more precise data, and that we considered a more complete system,' Sawala said to the site. While a 220,000 mph galaxy-on-galaxy collision sounds catastrophic, astronomers say a head-on impact is 'very unlikely.' In fact, only 2% of simulations showed a direct hit within 5 billion years. Most scenarios had the galaxies swirling toward each other, possibly merging much later — or not at all. Still, if they do collide, it could be a literal star show. 'We see external galaxies often colliding and merging with other galaxies, sometimes producing the equivalent of cosmic fireworks,' said Durham cosmologist Professor Carlos Frenk, via The Daily Mail. 'Until now, we thought this was the fate that awaited our Milky Way galaxy. We now know that there is a very good chance that we may avoid that scary destiny.' But even if Earth sidesteps this stellar shakedown, don't get too comfortable. As The Post previously reported, our sun is expected to become a bloated red giant in about 5 billion years — likely boiling away Earth's oceans or swallowing the planet entirely. So, yeah. Pick your apocalypse. 'If [the Milky Way-Andromeda collision] happens, it might take place after the Earth and the sun no longer exist,' Sawala told The Daily Mail. 'Even if it happens before that, it's very unlikely that something would happen to Earth in this case.' Translation: By the time the universe gets around to smashing the Milky Way, we'll probably already be toast. Still, some experts say galactic fate is more than just an astronomer's obsession. 'The fate of our Milky Way galaxy is a subject of broad interest — not just to astronomers,' Raja GuhaThakurta of the University of California, Santa Cruz, told the Associated Press. And while the galaxy might survive — barely — we may not. As Sawala put it: 'Of course, there is also a very significant chance that humanity will bring an end to itself still much before that, without any need for astrophysical help.' Talk about a stellar self-own.

Solar 'cannonballs' may have stripped Mars of its water, long-awaited study reveals
Solar 'cannonballs' may have stripped Mars of its water, long-awaited study reveals

Yahoo

time31 minutes ago

  • Yahoo

Solar 'cannonballs' may have stripped Mars of its water, long-awaited study reveals

When you buy through links on our articles, Future and its syndication partners may earn a commission. After nearly a decade in orbit, NASA's MAVEN spacecraft has, for the first time, directly observed the process that scientists had long suspected was responsible for stripping Mars of its atmosphere. The findings, published May 28 in the journal Science Advances, could help answer a longstanding question about how Mars transformed from a potentially habitable world with rivers and lakes into the mostly-frozen desert we see today. Although Mars today is dry, cold and virtually airless, its surface is carved with unmistakable evidence of a wetter past. Features resembling ancient river valleys, lake beds, and minerals that only form in the presence of water point to long-lived lakes, possibly even shallow seas, that flowed on Mars' surface billions of years ago. For liquid water to persist, however, Mars would have needed a much denser atmosphere to trap heat and sustain higher surface pressure. Understanding when and how that atmosphere vanished is essential to reconstructing Mars' climate evolution, and to determining how long the planet may have remained habitable. Over the past decade, scientists have gathered mounting evidence that solar wind — the constant stream of ionized particles emitted from the sun — and radiation stripped away much of the Martian atmosphere. Among the most significant mechanisms behind this erosion is a process called sputtering, where high-energy particles from solar wind collide with the planet's upper atmosphere. These collisions, in principle, transfer enough energy to neutral atoms and help break them free from the planet's gravitational pull, flinging them into space. "It's like doing a cannonball in a pool," Shannon Curry, the principal investigator of the MAVEN mission at the University of Colorado Boulder who led the new study, said in a statement. "The cannonball, in this case, is the heavy ions crashing into the atmosphere really fast and splashing neutral atoms and molecules out." While sputtering had long been suspected as a key player in Mars' climate evolution, this is the first time the process has been observed directly. Using nine years of data from the MAVEN spacecraft, Curry and her colleagues captured present-day sputtering on Mars. Related: NASA rover discovers out-of-place 'Skull' on Mars, and scientists are baffled By combining data from three of MAVEN's instruments, the researchers created a detailed map of argon, a noble gas, in Mars' upper atmosphere. Argon is an ideal tracer for this kind of atmospheric escape because it is chemically inert, heavy, and resistant to becoming charged. This makes it unlikely to interact with other atmospheric processes, meaning any significant loss of argon serves as a clear tracer of sputtering. Indeed, MAVEN detected the highest concentrations of argon at altitudes where solar wind particles collide with the Martian atmosphere, the new study reports. Its presence was much higher than where scientists would expect it to naturally waft under the planet's gravity, so the findings provide direct evidence that sputtering is actively lifting and removing the molecules from Mars, according to the new study. This process may even have been the driving force behind the loss of Mars' once-thick atmosphere and, with it, its ability to host liquid water on the surface, the study notes. MAVEN's data also revealed that this process occurs at a rate four times higher than previously predicted by models, according to the new study. It became more pronounced during solar storms, potentially offering a glimpse into how much more intense the process might have been during Mars' early history when the planet was more vulnerable to the sun's energy. RELATED STORIES —Scientists find hint of hidden liquid water ocean deep below Mars' surface —Lights on Mars! NASA rover photographs visible auroras on Red Planet for the first time —Perseverance rover rolls onto 'Crocodile' plateau on Mars to hunt for super-old rocks Scientists suspect this process was especially intense billions of years ago, when the sun was more active and Mars had already lost its protective magnetic field. Without that magnetic shield, the Martian atmosphere was left vulnerable to the full force of the solar wind, accelerating its erosion and pushing the planet past a tipping point where liquid water could no longer persist. "These results establish sputtering's role in the loss of Mars' atmosphere and in determining the history of water on Mars," Curry said in the statement. To fully determine whether sputtering was indeed the primary driver of Mars' long-term climate change, scientists will need to peer billions of years into the past using models, isotopic data, and ancient climate clues. Only then can they judge whether sputtering merely grazed the edges of Mars' atmosphere — or stripped it bare.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store