logo
Glow-in-the-Dark Salamanders May Have Just Unlocked the Future of Regeneration

Glow-in-the-Dark Salamanders May Have Just Unlocked the Future of Regeneration

Yahoo2 days ago

What if the key to human limb regeneration wasn't buried in sci-fi dreams—but already in your medicine cabinet?
Scientists at Northeastern University have uncovered a breakthrough that's raising eyebrows in both the dermatology and regenerative biology worlds. The chemical at the center of it all? Retinoic acid—a form of vitamin A that's also the active ingredient in isotretinoin, better known as Accutane.
In a new study, which was published in Nature Communications, researchers mapped how axolotls. The Mexican salamander has a freakish ability to regrow limbs using varying concentrations of retinoic acid to guide the regrowth of bones, joints, muscles and skin.
When an axolotl loses a leg, it doesn't just grow back—it grows back perfectly. And scientists now understand more clearly how that biological GPS works.
At the heart of the process is an enzyme called CYP26b1, which breaks down retinoic acid and dictates how much of the chemical floods a given area. Higher levels mean longer bone growth. Lower levels cue the development of feet and digits.
The implications are massive: by controlling retinoic acid levels, scientists were able to create glow-in-the-dark salamanders with either perfectly formed limbs or comically misshapen ones.
While these findings are still at the basic science stage, researchers believe they've taken a major step toward understanding how to activate dormant genetic mechanisms in humans. Because here's the kicker: the genes involved in limb regeneration already exist in our DNA. We just don't know how to switch them back on—yet.
Retinoic acid has long been linked to fetal development, and now it's being eyed as a possible tool to coax adult tissues into reprogramming themselves post-injury. It's not a silver bullet, but it might be part of the recipe.
'We might just need to remind the body what it already knows how to do,' James Monaghan, the study's lead scientist, told Popular Science.
If that's true, the path to real human regeneration might be shorter—and stranger—than we ever imagined.
Glow-in-the-Dark Salamanders May Have Just Unlocked the Future of Regeneration first appeared on Men's Journal on Jun 10, 2025

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

The science behind the smell of rain
The science behind the smell of rain

Yahoo

timean hour ago

  • Yahoo

The science behind the smell of rain

You know the smell. It's there every time the first fat raindrops hit the ground—a distinctive, earthy scent that suffuses the air, an aroma that speaks of the changing seasons and promises relief from stifling summer heat. There's a name for the smell of rain, too: 'petrichor,' a poetic portmanteau of the Greek words 'petros' (stone) and 'ichor' (the blood of the gods in Greek mythology). Petrichor: the smell of rain. But what causes it? The name 'petrichor' was coined by Australian scientists Isabel Bear and Dick Thomas in 1964, in a paper that constituted perhaps the first serious scientific attempt to explain the phenomenon. The duo used the word to refer to an oil that they distilled from samples of soil and vegetation that were left for up to a year exposed to air and daylight but shielded from rain. They found that the oil contained a complex mixture of volatile organic compounds. One question left unanswered by Bear and Thomas was the origin of these compounds, and subsequent research has focused on one particular compound, a volatile bicyclic alcohol called geosmin. The compound was isolated a year after Bear and Thomas's paper, and its name literally means 'earth smell.' Along with another volatile organic compound called 2-methylisoborneol or 2-MIB, geosmin is primarily responsible for the characteristic smell of earth—and both contribute greatly to the smell of rain. Ryan Busby, an ecologist at the US Army's Corps of Engineers, tells Popular Science that these compounds exist in soil the world over, and that they're spritzed into the air whenever soil is disturbed. '[The compounds] accumulate in the pore spaces in the soil,' Busby explains. 'There might be some binding to soil particles. [And] research has shown that that impact with the soil surface causes the volatiles to be released into the atmosphere.' So where do geosmin and 2-MIB come from? Busby says that while the source of both compounds remains the subject of plenty of active research, the current scientific consensus is that they are released by soil-dwelling bacteria. Differing ratios of the two compounds may explain why the smell differs subtly from place to place. 'Geosmin is pretty consistent across the environment, while 2-MIB is more variable. [Where 2-MIB is present], it is released in much higher concentrations, so you get areas where there's huge concentrations, and then areas where there's none,' Busby says. The other components that make up petrichor—a myriad less powerful plant-related volatiles, and also perhaps the distinctive acrid smell of ozone that accompanies lightning—vary from location to location. Humans are remarkably sensitive to the smell of geosmin, in particular. In water, it can be detected at concentrations as low as 4 ng/L, which equates to about one teaspoon in 200 Olympic swimming pools. Busby says there are several theories for why this might be. 'One [theory] is finding water sources,' he explains. 'Geosmin seems to be more prevalent in moist, fertile soils.' The presence of moist soil means the presence of water, and it's easy to see how being able to catch a whiff of geosmin on the wind and follow it to a source of water would provide a valuable evolutionary advantage. It's not just humans who appear to be able to rely on the scent of these volatile compounds to find water, Busby says. 'Camels can detect geosmin and find oases in the desert from 50 miles away. Mosquitoes use it to find stagnant ponds for laying eggs, and raccoons use it to find turtle nests and buried eggs.' But while the smell of geosmin and 2-MIB are appealing to us, their taste is the complete opposite. 'It's kind of funny,' muses Busby. 'We love the smell, but we hate the taste.' In water, these compounds are responsible for the musty, moldy taste that indicates that water isn't safe to drink. Busby says, 'Any time you drink water and you think, 'Oh, this, this tastes like lake water,' it's because those compounds are dissolved in what you're drinking.' Again, there's most likely an evolutionary reason for this: it's one thing for the soil around a water source to smell of bacteria, but if the water itself carries the distinctive musty odor of geosmin and 2-MIB, it also most likely carries the potential for gastrointestinal unpleasantness. Busby says that this explains why geosmin and 2-MIB are 'the primary odor contaminants of drinking water globally.' There's one unanswered question here, though: why are geosmin and 2-MIB there in the first place? As Busby points out, while it's clear that 'there are a number of uses for geosmin for us, we're not sure exactly why [bacteria] produce it in such quantities. It's a [large] energy cost to produce a chemical like that.' So why do soil-borne bacteria pump out geosmin and 2-MIB? What's in it for them? A paper published in Nature Microbiology in 2020 suggested a possible answer. The study examined interactions between Streptomyces—one variety of geosmin- and 2-MIB-producing bacteria—and small creatures called springtails. (Springtails are one of three varieties of six-legged arthropods that are not considered insects, and they have a taste for bacteria.) Crucially, the researchers found that in the bacteria studied, geosmin and 2-MIB were produced only by colonies that were also producing reproductive spores. In fact, they can only be produced by those specific colonies: 'The genes for geosmin and 2-MIB synthases are under the direct control of sporulation-specific transcription factors, constraining emission of the odorants to sporulating colonies,' the paper explains. Springtails are attracted by geosmin and 2-MIB, so unsurprisingly, upon arrival at the odor-emitting colonies, they helped themselves happily to a tasty microbial snack. In doing so, they also consumed the bacterial spores. The spores were then able to pass through the springtail's digestive tracts and emerge ready for action from the other end. Busby says this might also explain why the smell of rain is strongest when it comes from rain hitting dry soil. 'As soil dries out, the bacteria are going to go dormant, and there seems to be a flush of release [at that point]. So from that respect, [the compounds] are a way to attract something that maybe will carry [the bacteria] to a more conducive environment for growth.' It might feel like the poetic appeal of petrichor is diminished somewhat by discovering that the oh-so-evocative smell of rain most likely exists to encourage a bunch of tiny arthropods to poop out bacterial spores. But ultimately, it's another example of nature finding a way—a co-evolutionary relationship that recalls bees and pollen, and one that extends its benefits to the rest of us. So the next time the rain hits dry soil, think about the tiny bacteria that both lead us to water and stop us drinking from sources that might harm us. This story is part of Popular Science's Ask Us Anything series, where we answer your most outlandish, mind-burning questions, from the ordinary to the off-the-wall. Have something you've always wanted to know? Ask us.

Mercury from centuries-old pollution still circulating in oceans, study finds
Mercury from centuries-old pollution still circulating in oceans, study finds

The Hill

time2 hours ago

  • The Hill

Mercury from centuries-old pollution still circulating in oceans, study finds

Toxins released by long-extinguished fossil fuel fires and gold smelters are showing up in the bodies of Arctic wildlife, according to new research pointing to mercury released by pollution hundreds of years ago still circulating in ocean currents. A paper published on Thursday in Nature Communications sought to untangle a paradox: why levels of the potent neurotoxin mercury in Arctic whales and polar bears are increasing — despite steps the world has taken to curb mercury pollution. Those levels are now 20 to 30 times higher in Arctic wildlife than they were before the industrial era began, even as global mercury pollution has fallen since the 1970s. 'We've monitored mercury in Arctic animals for over 40 years. Despite declining global emissions since the 1970s, we see no corresponding decrease in Arctic concentrations — on the contrary,' coauthor Rune Dietz of Aarhus University, said in a statement. The researchers' conclusion: mercury released by pollution hundreds of years ago is still circulating in ocean currents, which convey it up to the Arctic. The findings come amid reports that the Trump administration is seeking to overturn rules limiting the release of mercury from U.S. power plants — a step that reverses a long campaign to slow its accumulation in the atmosphere. If these U.S. changes take place, the findings suggest, they will continue to contaminate the environment well into the 2300s. Mercury — particularly forms that have been processed by bacteria — wreaks havoc on the brain and body, disrupting the ability of humans and animals to move, sense and think. While a global effort has been successful in cutting levels of mercury in the atmosphere, Thursday's findings point to a mystery: levels of the toxin in the muscle and tissue of top predators like seals and polar bears are still going up. In addition to being released into the environment from burning fossil fuels, mercury is also used to purify gold extracted in small-scale or wildcat mining — a practice that is still common in the world's forests, but has significantly decreased from its 19th Century peak. In gold rushes like those in 1850s California or the modern Amazon, miners used mercury to bind together gold together from a slurry of dirt and ore, and then burn it off to leave pure gold — sending the mercury into the atmosphere. From there, mercury rains down onto the land and flows into lakes and rivers, where bacteria break it down — as well as into the oceans, where that breakdown can take as much as 300 years. The same quality that lets mercury pull together gold flakes gives it an insidious role in the environment because animals cannot easily purge it from their bodies. That means mercury levels concentrate in the bodies of top predators — whether bears or humans. The long duration of mercury in oceans gives it time to make its own epic journey from 19th Century smelters to the modern Arctic, the scientists found. 'Transport of mercury from major sources like China to Greenland via ocean currents can take up to 150 years,' Dietz said. 'This helps explain the lack of decline in Arctic mercury levels.' Though China is working to phase out mercury mining and pollution from coal, the findings suggest a long lag time. Even if mercury pollution continues to decrease, the scientists projected, its levels will continue to go up in the Arctic.

Bats Have Cancer-Fighting ‘Superpowers'—Here's What That Means for Humans
Bats Have Cancer-Fighting ‘Superpowers'—Here's What That Means for Humans

Gizmodo

time2 hours ago

  • Gizmodo

Bats Have Cancer-Fighting ‘Superpowers'—Here's What That Means for Humans

When you think of longevity in animals, chances are that the Greenland shark will immediately come up. After all, researchers estimate that the enigmatic animal can live for at least 250 years. It turns out, however, that bats also hold their own when it comes to lifespan, with some species living up to 25 years—equivalent to 180 human years—and they tend to do it cancer-free. Researchers from the University of Rochester (UR) have investigated anti-cancer 'superpowers,' as described in a UR statement, in four bat species: the little brown bat, the big brown bat, the cave nectar bat, and the Jamaican fruit bat. The results of their investigation could have important implications for treating cancer in humans. 'Longer lifespans with more cell divisions, and longer exposure to exo- [external] and endogenous [internal] stressors increase cancer incidence,' the researchers wrote in a study published last month in the journal Nature Communications. 'However, despite their exceptional lifespans, few to no tumors have been reported in long-lived wild and captive populations of bats.' Led by biologists Vera Gorbunova and Andrei Seluanov from the UR Department of Biology and Wilmot Cancer Institute, the team identified a number of biological defenses that help bats avoid the disease. For example, bats have a tumor-suppressor gene, called p53. Specifically, little brown bats carry two copies of the gene, and have high p53 activity, which can get rid of cancer cells during apoptosis, a biological process that eliminates unwanted cells. 'We hypothesize that some bat species have evolved enhanced p53 activity as an additional anti-cancer strategy, similar to elephants,' the researchers explained. Too much p53, though, runs the risk of killing too many cells. Clearly, bats are able to find the right apoptosis balance. Humans also have p53, but mutations in the gene—which disrupt its anti-cancer properties—exist in around 50% of human cancers. The researchers also analyzed the enzyme telomerase. In bats, the telomerase expression allows bat cells to multiply endlessly. That means they don't undergo replicative senescence: a feature that restricts cell proliferation to a certain number of divisions. Since, according to the study, senescence 'promotes age-related inflammation contributing to the aging process,' bats' lack thereof would seem to promote longevity. And while indefinite cell proliferation might sound like the perfect cancer hotbed, bats' high p53 activity can kill off any cancer cells. Furthermore, 'bats have unique immune systems which allows them to survive a wide range of deadly viruses, and many unique immune adaptations have been described in bats,' the researchers wrote. 'Most knowledge of the bat immune systems comes from studies of bat tolerance to viral infections deadly to humans. However, these or similar immune adaptations may also recognize and eliminate tumors,' as well as 'temper inflammation, which may have an anticancer effect.' Cells have to go through several steps, or 'oncogenic hits,' to become harmful cancerous cells. Surprisingly, the researchers also found that it only takes two hits for normal bat cells to become malignant, meaning bats aren't naturally resistant to cancer—they just have 'robust tumor-suppressor mechanisms,' as described in the statement. The team's findings carry important implications for treating cancer. Specifically, the study confirms that increased p53 activity—which is already targeted by some anti-cancer drugs—can eliminate or slow cancer growth. More broadly, their research is yet another example of scientists turning to nature for solutions to human challenges on all scales. Though the study focuses on bats, the ultimate aim is, always, finding a cure for cancer in humans.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store