
Scientists reveal the sharpest-ever images of the sun's surface
We can't gaze closely in the direction of the sun, can we? Well, we could just now with this innovation. Courtesy of this breakthrough new camera devised at the Vacuum Tower Telescope in Tenerife.
Tired of too many ads? go ad free now
In a breakthrough in solar astronomy, astronomers have achieved a historic feat by taking the most precise images ever of the Sun. This has been made possible through the pairing of a highly advanced new camera system with the Vacuum Tower Telescope (VTT) at the Teide Observatory on the Spanish island of Tenerife.
The Vacuum Tower Telescope has been in use since 1988 and is famous for its significant discoveries in solar physics.
But this technological upgrade has tremendously expanded its reach. The state-of-the-art camera system can take 100 rapid, short-exposure images at 25 frames per second. All of them have a resolution of 8,000 by 6,000 pixels, far beyond what any of the modern ground-based solar telescopes can manage.
Unprecedented image detail
These short exposure photos are not just issues of speed and breadth; they are subsequently processed using impeccable image restoration techniques in order to reduce distortions caused by Earth's atmosphere.
The result is a single ultra-high-resolution image that is able to capture details on the surface of the Sun as little as 100 kilometers in size, a resolution level that allows scientists to peer deep into the inner mechanisms of solar activity as never before.
Perhaps the most stunning aspect of this achievement is the extent of coverage. The VTT's new apparatus allows it to image a region about 200,000 kilometers across — about one-seventh of the Sun's full diameter.
Tired of too many ads? go ad free now
This is a significant increase from previous equipment, which was limited to observing areas only about 75,000 kilometers across. This increased field of view offers a better understanding of how small details such as sunspots function within the greater structure of the Sun.
They were obtained in the G-band wavelength, which is ideally suited to observe the fine structure of the solar photosphere. In the newly released photos, researchers have seen distorted penumbral filaments within sunspots — indicators of complex magnetic activity that typically predict the potential for solar flares.
The G-band photos also enable one to see how sunspots are structured within broader convection cells called supergranules, illuminating more about the dynamic processes of the Sun.
Real-time monitoring of solar activity
Even more thrilling about this advancement is its capacity to monitor these changes in the Sun's surface in real time. With updates as frequently as every 20 seconds, researchers can now monitor the rapidly changing magnetic fields and plasma flows on the Sun's surface.
This is a vital leap forward in studying space weather phenomena, which can impact satellite communications, GPS, and even power grids on our planet.
The advent of this state-of-the-art imaging system is a revolutionary point in the study of the sun. It not only makes us more efficient in the study of the sun and its finer aspects but also makes us capable of predicting solar activity in many ways. The world is evolving, and so is our technology. Devices like these are crucial in unearthing hidden secrets and more

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Hindustan Times
10 hours ago
- Hindustan Times
Has a geomagnetic storm hit Earth? Massive solar flare reported; aurora likely
Earth was struck by a powerful Coronal Mass Ejection (CME), with the speed of upwards of 1000 km/sec late on Saturday amid fears of a rare geomagnetic storm. Space Weather Live cited the CMS speed to report that the wave has been measured by the Deep Space Climate Observatory (DSCOVR) spacecraft located at the Sun-Earth L1 point. 'With the current speed, it will take the solar wind 25 minutes to propagate from DSCOVR to Earth,' Space Weather Live added. The CME, a massive eruption of plasma and magnetic fields from the Sun's corona, reached Earth at around 1:30 AM ET on June 1, as predicted by NASA and NOAA models. Read More: Geomagnetic storm today: List of states where northern lights will be seen. Latest aurora map here reported solar wind speeds peaking at 1002 km/sec, with the interplanetary magnetic field (IMF) strength (Bt) reaching 25 nT and a southward Bz component of -18 nT. These conditions allow solar wind energy to penetrate Earth's magnetosphere and trigger auroras. Auroral activity is expected to be spectacular, with vibrant green, red, and purple displays caused by charged particles colliding with atmospheric gases. Space Weather Live further notes that G4 storms expand the auroral oval to 45–50° geomagnetic latitude, making the northern lights visible in states like Washington, Montana, Minnesota, Wisconsin, Michigan, and parts of New York. A potential G5 escalation could extend visibility to southern states like Alabama, Oregon, and Northern California. Meanwhile, the NOAA's Space Weather Prediction Center (SWPC) noted that the storm has sparked aurora alerts for as far south as Alabama and Northern California, while raising concerns about potential disruptions to power grids, satellites, and radio communications. The NOAA further warns of potential disruptions to power grids, with voltage irregularities possible in high-latitude regions. Satellites may experience drag and orientation issues, while GPS and radio signals could face intermittent outages. The CME's origin, an M8.2 flare from AR14100, was identified by Space Weather Live as a full-halo event, indicating an Earth-directed trajectory. The flare, peaking at 0005 UTC on May 31, also raised concerns about R1-R2 radio blackouts.


Hans India
a day ago
- Hans India
What is Oumuamua? 6 Fascinating Facts About the First Interstellar Visitor to Our Solar System
In 2017, astronomers made a groundbreaking discovery: the first known interstellar object to pass through our solar system. Named 'Oumuamua—a Hawaiian word meaning 'a messenger from afar arriving first'—this mysterious object has intrigued scientists and the public alike ever since. Here are six key facts about this cosmic visitor. 1. Discovery That Changed Astronomy Oumuamua was detected on October 19, 2017, by the University of Hawaii's Pan-STARRS1 telescope. Officially designated 1I/2017 U1 by the International Astronomical Union, it was first classified as an asteroid before further analysis revealed behavior more akin to a comet, due to its unexpected acceleration. 2. Unusual Shape and Speed Oumuamua is estimated to be up to 400 meters long and unusually elongated—possibly ten times longer than it is wide. Its reddish hue is similar to many distant solar system objects. What stunned astronomers further was its rapid rotation every 7.3 hours and dramatic brightness variations. It was clocked moving at a staggering speed of 196,000 miles per hour (87.3 km/s). 3. A Dry, Mysterious Surface Unlike typical comets, Oumuamua displayed no visible gas or dust, which left astronomers puzzled. Its dry, metallic or rocky surface lacked the comet-like tail typically seen in icy bodies, leading researchers to suggest it had been bombarded by cosmic rays for millions of years during its interstellar journey. 4. Anomalous Acceleration After its closest approach to the Sun on September 9, 2017, Oumuamua began accelerating in a way that couldn't be fully explained by gravity alone. This unexpected movement sparked debate over its true nature—was it a comet, an asteroid, or something entirely different? Though it entered from the direction of the Lyra constellation, its origin remains unknown. 5. Natural Object—or Alien Tech? Some experts, most notably Harvard astronomer Avi Loeb, suggested Oumuamua could be a piece of alien technology, such as a light sail. While this theory captured the public imagination, the dominant scientific consensus holds that it is a natural object—perhaps a fragment of a hydrogen ice body or a 'dark comet' unlike any seen before. 6. A Fleeting Visitor with a Long Legacy After briefly visiting the inner solar system, Oumuamua is now heading toward the constellation Pegasus, having already passed Mars's orbit by late 2017. It's expected to exit the solar system entirely by 2038. Scientists believe such interstellar objects may pass through our solar system roughly once a year, but most remain undetected due to their small size and speed.


Time of India
a day ago
- Time of India
Astronomers discover the largest, oldest black hole jet ever
Astronomers have made a record discovery by observing the most massive and oldest black hole jet ever seen, which belongs to the quasar J1601+3102. The over 200,000 light-years-long jet, nearly twice as long as our Milky Way galaxy, is a one-of-a-kind glimpse into the early universe. The light from this quasar began its journey to Earth more than 12 billion years ago, and thus scientists can study the universe as it appeared when it was 1.2 billion years old, about 9% of its present age. The quasar J1601+3102 is powered by a massive black hole with a mass of approximately 450 million times the mass of our Sun. That's significant but modest by comparison to other quasars, whose black holes are billions of times more massive than the Sun. The finding overturns previous theories that only very large black holes were able to produce such gigantic jets, and it indicates that early universe black holes with a range of masses played an important role in the environment around them. All about this jet The observation was made possible through the collaborative power of some advanced telescopes: LOFAR (Low-Frequency Array): A system of European radio telescopes that first detected the jet. by Taboola by Taboola Sponsored Links Sponsored Links Promoted Links Promoted Links You May Like Has Honda Done It Again? The New Honda CR-V is Finally Here. TheFactualist Undo Gemini Near-Infrared Spectrograph (GNIRS):Located in Hawaii, this facility allowed astronomers to measure the redshift of the quasar, how far away it is, and how old it is. Hobby-Eberly Telescope: Based in Texas, this telescope provided optical data to further elucidate the quasar and the jet. Implications for cosmic evolution The vast size of the jet would mean that even relatively small early-universe black holes would have been able to produce such energetic jets. They would have played a significant part in galaxy evolution by regulating the formation of stars and dispersing energy over enormous distances. The asymmetry of the jet would imply that environmental conditions may dictate the direction and power of such outflows. It is crucial to comprehend these dynamics to unravel the tangled interactions that determine galaxy formation. This discovery not only provides a glimpse of the activities of black holes in the primordial universe but also underlines the strength of modern radio astronomy. With the upgrading of technology, astronomers anticipate finding more similar phenomena, strengthening our knowledge of the universe's formative periods.