logo
'She is the only person in the world compatible with herself' — scientists discover new blood type but it's unique to just one person from Guadeloupe

'She is the only person in the world compatible with herself' — scientists discover new blood type but it's unique to just one person from Guadeloupe

Yahoo29-06-2025
When you buy through links on our articles, Future and its syndication partners may earn a commission.
Scientists have discovered a new blood group that has so far only been identified in one woman, from the French overseas region of Guadeloupe.
The 68-year-old is the only known person in the world to have this blood group, which has been named "Gwada negative," after a local name for her home islands. The researchers behind the discovery announced their work in a presentation at the International Society of Blood Transfusion's Congress in Milan, which concluded June 4.
The research team first met the woman in 2011, when she was living in Paris and undergoing routine tests before a surgery. But the tests couldn't reveal her blood type or any matches for it.
Analysis at the time wasn't advanced enough to detect the cause, and the case lay cold for eight years.
In 2019, researchers utilized high-throughput gene sequencing analysis, which enables faster and more in-depth analysis of DNA, to re-examine the woman's blood. Two years of detailed research followed, in which the team sequenced her entire genome.
Human blood group systems are more complex than you might think. These classifications refer to proteins and sugars found on the surface of red blood cells, called antigens, which are recognized by our immune system. Austrian-American biologist Dr. Karl Landsteiner identified the first and most familiar blood group system — ABO — in 1901, and this won him a Nobel in 1930.
Related: How many blood types are there?
The classic ABO blood typing system describes whether people have one, both or neither of the antigens known as "A" and "B" on their blood cells. The second most well-known blood group system is rhesus classification, which considers whether your cells are "positive" or "negative" for an antigen called Rh factor.
Together, the combinations of the ABO and Rh systems give us the eight main blood groups — but there are dozens of lesser known blood group systems, 45 of which were recognized by the International Society of Blood Transfusion (ISBT) as of 2024. Now, Gwada negative has been recognized as number 48.
The woman's unusual lab test results eventually led to the discovery of a mutation in a gene called PIGZ, which alters how proteins anchor to the surface of blood cells. The woman's unique mutations mean "she is the only person in the world compatible with herself," Thierry Peyrard, a biologist at French blood research body Établissement français du sang (EFS), told AFP.
Blood group systems are essential for blood transfusions, as our bodies reject blood group antigens that they perceive as foreign. If we go back to the ABO system, for example, people with both A and B antigens can receive blood from anyone else, as their body recognizes both antigens as familiar. People with the O blood type have neither A or B antigens, meaning they can only receive blood from other type O donors.
RELATED STORIES
—What's the rarest blood type?
—Lab-made universal blood could revolutionize transfusions. Scientists just got one step closer to making it.
—Why do we have different blood types?
While the ABO and Rh systems are still considered the most critical for transfusions, rarer systems can still influence who an individual can receive blood from.
The research team's next aim is to discover whether there are other people with this unique new blood group. As blood types are genetic and thus often shared by populations with similar ancestries, the team intends to start the search among blood donors in Guadeloupe.
"Discovering new blood types means offering patients with rare blood a better level of care," the EFS statement says.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Never-before-seen cousin of Lucy might have lived at the same site as the oldest known human species, new study suggests
Never-before-seen cousin of Lucy might have lived at the same site as the oldest known human species, new study suggests

Yahoo

timean hour ago

  • Yahoo

Never-before-seen cousin of Lucy might have lived at the same site as the oldest known human species, new study suggests

When you buy through links on our articles, Future and its syndication partners may earn a commission. Roughly 2.6 million-year-old fossilized teeth found in Ethiopia might belong to a previously unknown early human relative, researchers say. The teeth are from a species of Australopithecus, the genus that includes Lucy (A. afarensis). But these newly discovered teeth don't appear to belong to any known species of Australopithecus, according to a new study published in the journal Nature on Wednesday (Aug. 13). What's more, at the same site the researchers found extremely old teeth from Homo, the genus that includes modern humans (Homo sapiens). These teeth may belong to the oldest known Homo species on record, which scientists haven't yet named, the study found. These new discoveries show that at least two lineages of early hominins — a group that includes humans and our closest relatives — coexisted in the same region around 2.6 million years ago, the researchers said. Discoveries at Ledi-Geraru archaeological site The researchers found the teeth at the Ledi-Geraru archaeological site in northeastern Ethiopia, which is known for earlier groundbreaking discoveries: a 2.8 million-year-old jawbone that's the oldest known human specimen, as well as some of the oldest known stone tools made by hominins, which date to 2.6 million years ago. Paleontologists and archaeologists hypothesize that the region was an open and arid grassy plain during this period, based on grass-eating animal fossils from that time. The area offered resources Homo and Australopithecus could use, Frances Forrest, an archaeologist at Fairfield University in Connecticut who was not involved with the new research, told Live Science in an email. Grasslands and rivers would have provided water to drink, plants to eat and large animals to hunt. Related: 'Huge surprise' reveals how some humans left Africa 50,000 years ago But the unusually rich fossil record in this area could also be because of excellent preservation of remains, due to volcanic eruptions, for example — not necessarily that this was a hominin hotspot, Forrest said. Australopithecus and Homo teeth In the new study, the researchers used layers of volcanic ash above and below the newly discovered fossils to determine their age. Of the 13 teeth discovered, the team found 10 are 2.63 million years old and belonged to an unidentified species of Australopithecus, which for now the researchers are calling the Ledi-Geraru Australopithecus. Previously, researchers had found remains in the region from A. afarensis and Australopithecus garhi. But the newfound teeth look different from the teeth of those species. "It doesn't match any of these, so it could be a new species," study co-author Kaye Reed, a paleoecologist at Arizona State University, told Live Science. However, the research team hasn't officially named it as a newly identified species because the teeth don't have any especially unique features. "In the fossil record, researchers usually define a new species by finding anatomical traits that consistently differ from those of known species," Forrest said, adding that the evidence from this discovery is too limited to define a new species. The researchers also identified two teeth that are 2.59 million years old, and one that is 2.78 million years old, all belonging to the genus Homo, which Reed believes are from the same species as the oldest known Homo specimen — the jawbone discovered in Ledi-Geraru — although this hasn't been confirmed. Image 1 of 2 Study authors J. Ramón Arrowsmith and Christopher J. Campisano examine the geology of the area near the new fossils. Image 2 of 2 An aerial view of the Ledi-Geraru excavation site, home of the newly discovered fossilized teeth, and where the oldest known Homo specimen has been uncovered. The new discovery means at least three hominin species were living in this region of Ethiopia before 2.5 million years ago: the Homo and Australopithecus species these teeth belong to, as well as A. garhi. At the same time, A. africanus lived in South Africa, and Paranthropus, another hominin genus, lived in what is now Kenya, Tanzania and southern Ethiopia. This evolutionary trial-and-error within the extended hominin family is why humans' evolutionary tree is considered "bushy" rather than linear. "It has become clear over the last decade or so that during most of our evolutionary history … there have been multiple species of human relatives that existed at the same time," John Hawks, an anthropologist at the University of Wisconsin-Madison who was not involved in the new research, told Live Science. "The new paper tells us this is happening in Ethiopia … [in] a really interesting time frame, because it's maybe the earliest population of our genus Homo." Next steps The research team is now studying the enamel on the newfound teeth, as their chemistry can reveal what these species were eating. This may shed light on whether these hominins were eating the same things and competing for similar resources. "Right now, we can say very little with certainty about direct interaction between Australopithecus and Homo," Forrest said. "We know that both genera sometimes overlapped in time and space, but there is no behavioral evidence linking the two." RELATED STORIES —300,000-year-old teeth from China may be evidence that humans and Homo erectus interbred, according to new study —78,000-year-old footprints from Neanderthal man, child and toddler discovered on beach in Portugal —Stunning facial reconstructions of 'hobbit,' Neanderthal and Homo erectus bring human relatives to life Chimpanzees and gorillas live in some of the same forests, Hawks pointed out, but they're mostly geographically separated from each other, not living side by side. The fact these early hominins may have lived closer together than primates typically do now is interesting, Hawks said. "They probably weren't eating the same things," Reed noted. "But right now we don't really know." The researchers are also searching for more information and fossils at the site. "Everything we find is a piece in the puzzle of human evolution," Reed said. Human evolution quiz: What do you know about Homo sapiens?

A braided stream, not a family tree: How new evidence upends our understanding of how humans evolved
A braided stream, not a family tree: How new evidence upends our understanding of how humans evolved

Yahoo

timean hour ago

  • Yahoo

A braided stream, not a family tree: How new evidence upends our understanding of how humans evolved

When you buy through links on our articles, Future and its syndication partners may earn a commission. Our species is the last living member of the human family tree. But just 40,000 years ago, Neanderthals walked the Earth, and hundreds of thousands of years before then, our ancestors overlapped with many other hominins — two-legged primate species. This raises several questions: Which other populations and species did our ancestors mate with, and when? And how did this ancient mingling shape who we are today? "Everywhere we've got hominins in the same place, we should assume there's the potential that there's a genetic interaction," Adam Van Arsdale, a biological anthropologist at Wellesley College in Massachusetts, told Live Science. In other words, different hominin species were having sex — and babies — together. This means our evolutionary family tree is tangled, with still-unknown relatives possibly hiding in the branches. Emerging DNA evidence suggests this "genetic interaction" resulted in the diversity and new combinations of traits that helped ancient humans — including our ancestors — thrive in different environments around the globe. "It's all about variation," Rebecca Ackermann, a biological anthropologist at the University of Cape Town in South Africa, told Live Science. "More variation in humans allows us to be more flexible as a species and, as a result, be more successful as a species because of all the diversity." Cutting-edge techniques may illuminate the crucial periods deeper in our evolutionary past that led to Homo sapiens evolving in Africa, or even shed light on periods before the Homo genus existed. That knowledge, in turn, could improve our understanding of exactly what makes us human. Related: Lucy's last day: What the iconic fossil reveals about our ancient ancestor's last hours A braided stream In the early 20th century, scientists thought there was a clear evolutionary line between our ancestors and us, with one species sequentially evolving into another and no contribution from "outside" populations, like the branches on a tree. But 21st-century advances in ancient DNA analysis techniques have revealed that our origins are more like a braided stream — an idea borrowed from geology, where shallow channels branch off and rejoin a stream like a network. "It becomes very hard when you think about things in more of a braided stream model to divide [populations] into discrete groups," Ackermann said. "There are not, by definition, any discrete groups; they have contributed to each other's evolution." Ackermann studies variation and hybridization — the exchange of genes between different groups — across the evolutionary history of hominins, to better understand how genetic and cultural exchange made us human. And she thinks hybridization both within and outside Africa played a significant role in our origins. Evidence of such hybridization has come out in a steady stream since the first Neanderthal genome was sequenced in 2010. That research program, which earned geneticist Svante Pääbo a Nobel Prize in 2022, revealed that H. sapiens and Neanderthals regularly had sex. It also led to the discovery of the Denisovans, a previously unknown population that ranged across Asia from about 200,000 to 30,000 years ago and that also had offspring with both Neanderthals and H. sapiens. "You have so much complexity that it makes no sense to say there was only one origin of sapiens. There can't be one universal model that explains literally every human on Earth." Sheela Athreya, Texas A&M University When species share genes with one another through hybridization, the process is known as introgression, and when those shared genes are beneficial to a population, it's known as adaptive introgression. Emerging from two decades of gene studies of humans and our extinct relatives is the understanding that we may be who we are thanks to a proclivity to pair off with anyone — including other species. Connecting with other groups — socially and sexually — was an important part of human evolution. "For us to survive and become human probably really depended on that," Van Arsdale said. Benefits of hybridization Since the first Neanderthal genome was sequenced, researchers have attempted to identify when and how often our H. sapiens ancestors mated with other species and groups. They've also investigated how Neanderthal and Denisovan genes affect us today. Many of these studies rely on large datasets of genomes from humans living today and tie them back to ancient DNA extracted from the bones of extinct humans and their relatives who lived tens of thousands of years ago. These analyses show that many genes that originated in now-extinct groups may confer advantages to us today. For instance, modern Tibetans have a unique gene variant for high-altitude living that they likely inherited from the Denisovans, while different versions of Neanderthal skin pigment genes may have helped some populations adapt to less-sunny climates while protecting others from UV radiation. There is also evidence that Neanderthal genes helped early members of our species adapt quickly to life in Europe. Given their long history in Europe prior to the arrival of H. sapiens, Neanderthals had built up a suite of genetic variations to deal with diseases unique to the area. H. sapiens encountered these novel diseases when they spread into areas where Neanderthals lived. But, by mating with Neanderthals, they also got genes that protected them from those viruses. Beyond specific traits that may confer advantages in humans today, these episodes of mating diversified the human gene pool, which may have helped our ancestors weather varied environments. The importance of modern genetic diversity can be illustrated with human leukocyte antigen (HLA) genes, which are critical to the human immune system's ability to recognize pathogens. Humans today have a dizzying array of these genes, especially in eastern Asia. This area of the world is a "hotspot" for emerging infectious diseases due to a combination of biological, ecological and social factors, so this diversity may provide advantages in an area where new diseases are frequently emerging. When genetic diversity is lost through population isolation and decline, groups may become particularly susceptible to new infections or unable to adapt to new ecological circumstances. For instance, one theory holds that Neanderthal populations declined and eventually went extinct around 40,000 years ago because they lacked genetic diversity due to inbreeding and isolation. Related: Did we kill the Neanderthals? New research may finally answer an age-old question. Discovery of "ghost populations" Some of the newest research goes deeper into evolutionary time, identifying "ghost populations" — human groups that went extinct after contributing genes to our species. Often, archaeologists have no skeletal remains from these populations, but their echoes linger in our genome, and their existence can be gleaned by modeling how genes change over time. For instance, a "mystery population" of up to 50,000 individuals that interbred with our ancestors 300,000 years ago passed along genes that created more connections between brain cells, which may have boosted our brain functioning. The population that hybridized with H. sapiens and helped boost our brains may have been a lineage of Homo erectus. This species was once thought to have disappeared after evolving into H. sapiens in Africa, but anthropologists now think H. erectus survived in parts of Asia until 115,000 years ago. In fact, our evolutionary history may include the mating of populations that had been separated for up to a million years, Van Arsdale said. These "superarchaic" populations are increasingly being discovered as we mine our own genomes and those of our close relatives, Neanderthals and Denisovans. For instance, a genetic study published in 2020 identified a superarchaic population that separated from other human ancestors about 2 million years ago but then interbred with the ancestors of Neanderthals and Denisovans around 700,000 years ago. Experts don't know exactly what genes this superarchaic ghost population shared with our ancestors or who it was, but it may have been a lineage of H. erectus. Evolutionary blank space But there's a large, unmapped region of human evolutionary history — and it's crucial for our identity as a species. The period when H. sapiens was first evolving in Africa, and the more distant period of human evolutionary history on the continent that predates the Homo genus, remains a huge knowledge gap. That's in part because DNA preserves well in caves and other stable environments in frigid areas of the world, like those found in areas of Europe and Asia, while Africa's warmer conditions usually degrade DNA. As a result, the most ancient complete human DNA sequence from Africa is just 18,000 years old. By contrast, a skeleton discovered in northern Spain produced a full mitochondrial genome from a human relative, H. heidelbergensis, who lived more than 300,000 years ago. "Maps of human ancient DNA are overwhelmingly Eurasian data," Van Arsdale said. "And the reality is that's a marginal place in our evolutionary past. So to understand what was happening in the core of Africa would be potentially transformative." This is where current DNA technology falls short. Small hominins that walked on two legs, called australopithecines, evolved around 4.4 million years ago in Africa. And between 3 million and 2 million years ago, our genus, Homo, likely evolved from them. H. sapiens evolved around 300,000 years ago in Africa and then traveled around the world. But given the scarcity of ancient DNA from Africa, it is difficult to figure out which groups were mating and hybridizing in that vast time span, or how the fossil skeletons of human relatives from the continent were related. Related: 'It makes no sense to say there was only one origin of Homo sapiens': How the evolutionary record of Asia is complicating what we know about our species A new technique called paleoproteomics could help shed light on our African origin as a species and even reveal clues about the genetic makeup of australopithecines and other related hominins. Because genes are the instructions that code for proteins, identifying ancient proteins trapped in tooth enamel and fossil skeletons can help scientists determine some of the genes that were present in populations that lived millions of years ago. Still, it's a very new technique. To date, paleoproteomic analysis has identified only a handful of incomplete protein sequences in ancient human relatives and has thus far been able to glean only a small amount of genetic information from those. But in a landmark study published this year, researchers used proteins in tooth enamel to figure out the biological sex of a 3.5 million-year-old Australopithecus africanus individual from South Africa. And in another study, also published this year, scientists used tooth enamel from a 2 million-year-old human relative, Paranthropus robustus, to identify genetic variability among four fossil skeletons — a finding that suggests they may have been from different groups, or even different species. Paleoproteomics is still pretty limited, though. In a recent study, scientists analyzed a dozen ancient proteins found in fossils of Neanderthals, Denisovans, H. sapiens and chimpanzees. They found that these proteins could help reconstruct a family tree down to the genus level, but were not useful at the species level. Still, the fact that protein data can be used to reconstruct part of the braided stream of early humans and to identify the chromosomal sex of human relatives is encouraging, and further research along these lines is needed, experts told Live Science. Some are confident new approaches could help us unpack these early interactions. "I think we're going to learn a lot more about Africa's ancient past in the next two decades than we have so far," Van Arsdale said. Ackermann is more cautious. To really understand when, where and with whom our human ancestors mated and how that made us who we are, "we need to have a whole genome" from these ancient human relatives, she said. "With proteins, you just don't get that." Sheela Athreya, a biological anthropologist at Texas A&M University, is optimistic that we can use these new techniques to tease apart our more distant evolutionary past — and that it will yield surprises. For instance, she thinks what we now call Denisovans may actually have been H. erectus. RELATED STORIES —DNA has an expiration date. But proteins are revealing secrets about our ancient ancestors we never thought possible. —28,000-year-old Neanderthal-and-human 'Lapedo child' lived tens of thousands of years after our closest relatives went extinct —Never-before-seen cousin of Lucy might have lived at the same site as the oldest known human species, new study suggests "Absolutely in my lifetime, someone will be able to get a Homo erectus genome," Athreya said, likely from colder areas of Asia. "I'm excited. I think it'll look Denisovan." Either way, it's clear that a whole lot of mixing made us human. The Homo lineage may have first evolved in Africa, Athreya said. "But once it left Africa, you have so much complexity that it makes no sense to say there was only one origin of sapiens. There can't be one universal model that explains literally every human on Earth."

AI designs antibiotics to fight drug-resistant superbugs
AI designs antibiotics to fight drug-resistant superbugs

Yahoo

time2 hours ago

  • Yahoo

AI designs antibiotics to fight drug-resistant superbugs

An artificial intelligence model designed new antibiotics to fight gonorrhea and mRSA superbugs. The overuse of antibiotics can create resistance, when the drugs kill off all but those bacteria most capable of surviving the treatment. It has led to the rise of some bugs that are all but impossible to treat with existing antibiotics, raising fears that modern medicine and surgery — reliant on antibiotics — could collapse, given that few new antibiotics are produced. The new drugs were designed atom-by-atom using AI, and while they are a long way from the clinic, researchers hoped they could create a new pipeline for drugs. AI is rapidly transforming drug development and biology, allowing scientists to better predict how molecules behave in the body. Solve the daily Crossword

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store