logo
One Side of Earth Is Rapidly Getting Colder Than the Other

One Side of Earth Is Rapidly Getting Colder Than the Other

Yahoo4 days ago
Here's what you'll learn when you read this story:
Research shows the Pacific hemisphere is losing heat faster than the African hemisphere.
The heat is from Earth's molten interior, which causes continental drift.
Landmass traps more heat than seafloor surface, indicating a hotter Pacific of the past.
Scientists from the University of Oslo say one side of Earth's interior is losing heat much faster than the other side—and the culprit is practically as old as time.
A study published in Geophysical Research Letters uses computer models of the last 400 million years to calculate how 'insulated' each hemisphere was by continental mass, which is a key quality that holds heat inside instead of releasing it. The pattern goes all the way back to Pangaea.
Earth has a red hot liquid interior that warms the entire planet from inside. It spins, too, generating both gravity and Earth's magnetic field. This holds our protective atmosphere close to Earth's surface.
Over the extremely long term, this interior will continue to cool until Earth is more like Mars. The surprise in the study is how unevenly the heat is dissipating, but the reason makes intuitive sense: Parts of Earth have been insulated by more landmass, creating something of a Thermos layer that traps heat.
This contrasts with how Earth loses most of its heat: 'Earth's thermal evolution is largely controlled by the rate of heat loss through the oceanic lithosphere,' the study authors write. Why is this the site of the greatest loss? For that, we need a quick-and-dirty run-through of continental drift.
Earth's mantle is like a convection oven that powers a treadmill. Every day, seafloor surface moves a tiny bit; new seafloor is born from the magma that erupts at the continental divide, while old seafloor is smashed and melted beneath existing continental landmass.
To study how Earth's interior heat behaves, the scientists built a model that divides Earth into African and Pacific hemispheres, then divides Earth's entire surface into a grid by half degrees latitude and longitude.
The scientists combined several previous models for things like seafloor age and continental positions during the last 400 million years. Then, the team crunched the numbers for how much heat each grid cell contains over its long life. This paved the way to calculate the rate of cooling overall, where the researchers found the Pacific side has cooled much faster.
The seafloor is far thinner than the bulky landmass, and temperature from within Earth is 'quenched' by the enormous volume of cold water that's above it. Think of the gigantic Pacific Ocean compared with the opposite-side landmasses of Africa, Europe, and Asia—it makes sense that heat dissipates more quickly from the biggest seafloor in the world.
Previous research on this seafloor effect only went back 230 million years, meaning the new model, which goes back 400 million years, almost doubles the timeframe being studied.
There's a surprising contradiction in the findings. The Pacific hemisphere has cooled about 50 Kelvin more than the African hemisphere, but the 'consistently higher plate velocities of the Pacific hemisphere during the past 400 [million years]' suggest the Pacific was much hotter at a certain moment in time.
Was it covered by landmass at some point in the far distant past, keeping more heat inside? There are other possible explanations, but either way, the Pacific's high tectonic activity today points to a heat disparity. The meltier the mantle, the more the plates can slide and slam together.
Get the Issue
Get the Issue
Get the Issue
Get the Issue
Get the Issue
Get the Issue
Get the IssueGet the Issue
Get the Issue
You Might Also Like
The Do's and Don'ts of Using Painter's Tape
The Best Portable BBQ Grills for Cooking Anywhere
Can a Smart Watch Prolong Your Life?
Solve the daily Crossword
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Generative AI Gave MIT Scientists a New Tool to Fight Antibiotic-Resistant Bacteria
Generative AI Gave MIT Scientists a New Tool to Fight Antibiotic-Resistant Bacteria

CNET

timean hour ago

  • CNET

Generative AI Gave MIT Scientists a New Tool to Fight Antibiotic-Resistant Bacteria

Antibiotic-resistant bacteria are dangerous because they already "know" what most antibiotics look like. Scientists at MIT have found a way to create something new: using generative AI to design two antibiotic compounds from scratch that can kill drug-resistant gonorrhea and MRSA in lab dishes and mice. Antibiotic resistance is one of the world's biggest public health threats yet new antibiotics have been scarce for decades. Traditional drug discovery methods rely on screening known chemical libraries -- a slow process with a limited pool of existing molecules to test. In contrast, MIT's AI system generated more than 36 million theoretical compounds, many with chemical structures never seen before, and zeroed in on two standouts. Both are unlike any antibiotic currently in use, offering a glimpse at how AI can move beyond speeding up research to imagine medicines that might have been impossible to find otherwise. "We wanted to get rid of anything that would look like an existing antibiotic, to help address the antimicrobial resistance crisis in a fundamentally different way," said Aarti Krishnan, MIT postdoc and one of the study's lead authors. "By venturing into underexplored areas of chemical space, our goal was to uncover novel mechanisms of action." Read also: Do You Really Learn When You Use AI? What MIT Researchers Found How the science was pulled off The MIT team bypassed the limitations of screening existing chemical libraries by asking AI to invent molecules from scratch, generating more than 36 million theoretical compounds, which were then narrowed down to a few to be tested against drug-resistant superbugs. This involved two AI-driven strategies: Fragment-based design: The AI began with a chemical fragment (labeled F1) that showed promise against gonorrhea. It produced millions of derivatives, ultimately refining a shortlist of about 1,000 candidates. Of the 80 chosen by researchers, NG1 emerged as a standout compound that successfully treated drug-resistant gonorrhea in cell cultures and a mouse. Unconstrained generation: The team let the AI roam freely, designing molecules on its own, aiming at MRSA. This produced more than 29 million candidates, which were filtered down to 90 compounds for synthesis. Twenty-two were produced, six performed well in lab tests and one in particular, DN1, proved able to eliminate MRSA skin infections in mice. NG1 and DN1 are structurally distinct from any currently known antibiotics and appear to destroy bacteria by disrupting their cell membranes. NG1 specifically targets LptA, a previously untapped bacterial protein involved in constructing the outer cell membrane. What's next for antibiotic research Phare Bio, a nonprofit in the Antibiotics-AI Project, is refining NG1 and DN1 to improve their drug properties, while researchers expand the AI platform to target other tough pathogens like Mycobacterium tuberculosis (the causative agent of tuberculosis) and Pseudomonas aeruginosa (a group of bacteria that often causes infections in health-care settings). The study, first published in the journal Cell, signals a hopeful turn in the global struggle against superbugs. However, these findings are early-stage. Initial tests and lab results are encouraging, but human safety and efficacy must be established through rigorous lab refinement and clinical trials, a process that could span several years. This effort builds on MIT's previous breakthroughs in AI-guided antibiotic development, including halicin, discovered in 2020 via deep learning, and abaucin, discovered in 2023 via a machine-learning algorithm. Read more: AI Essentials: 29 Ways to Make Gen AI Work for You, According to Our Experts

Toothpaste Made From Hair Works Better Than Fluoride, Scientists Say
Toothpaste Made From Hair Works Better Than Fluoride, Scientists Say

Gizmodo

time2 hours ago

  • Gizmodo

Toothpaste Made From Hair Works Better Than Fluoride, Scientists Say

Looking for an effective, sustainable toothpaste? It might be on top of your head. Scientists have discovered that keratin, a protein found in hair, skin, and wool, can repair tooth enamel and stop tooth decay. It might also protect teeth even better than conventional fluoride-based toothpastes, stopping tooth decay in its tracks, according to a new study. When keratin comes into contact with saliva, it forms a protective coating that mimics natural enamel, the study shows. Not only can it shield teeth from further damage, but it may also help repair enamel—something traditional toothpastes can't do. The findings are published in Advanced Healthcare Materials. 'Keratin offers a transformative alternative to current dental treatments. Not only is it sustainably sourced from biological waste materials like hair and skin, it also eliminates the need for traditional plastic resins, commonly used in restorative dentistry, which are toxic and less durable,' Sara Gamea, a graduate student at King's College London and first author of the study, said in a statement. Tooth enamel wears away with age, leading to tooth sensitivity and eventually a need for dentures. This process is hastened by acidic foods and poor oral hygiene. And once enamel is gone, it's gone. Fluoride toothpaste can slow this process but not stop it. What can? Keratin, apparently. The protein forms a dense crystal-like scaffold that mimics the structure, color, and function of actual enamel, the new study found. Over time, the scaffold continues to attract calcium and phosphate ions, leading to the growth of an enamel-like coating on teeth. That means keratin-based toothpaste could potentially repair lost enamel and seal exposed nerves—reversing the symptoms of enamel erosion. The study authors used keratin extracted from wool in their study but said it could also be extracted from other sources, including human hair. This is a huge step for regenerative dentistry, the researchers say. It's also good for the environment, providing a biodegradable alternative to conventional toothpastes. And happily, consumers might not have to wait long to purchase a keratin-based toothpaste; the researchers say it could hit the market in the next two to three years. 'We are entering an exciting era where biotechnology allows us to not just treat symptoms but restore biological function using the body's own materials. With further development and the right industry partnerships, we may soon be growing stronger, healthier smiles from something as simple as a haircut,' Sherif Elsharkawy, the study's lead author and consultant in prosthodontics at King's College London, said in a statement.

Two types of ancient human ancestors coexisted more than 2 million years ago, fossils show
Two types of ancient human ancestors coexisted more than 2 million years ago, fossils show

CNN

time2 hours ago

  • CNN

Two types of ancient human ancestors coexisted more than 2 million years ago, fossils show

Ancient, fossilized teeth, uncovered during a decades-long archaeology project in northeastern Ethiopia, indicate that two different kinds of hominins, or human ancestors, lived in the same place between 2.6 million and 2.8 million years ago — and one of them may be a previously unknown species. The discovery provides a new glimpse into the complex web of human evolution. Ten of the teeth, found between 2018 and 2020, belong to the genus Australopithecus, an ancient human relative. Meanwhile, three teeth, found in 2015, belong to the genus Homo, which includes modern humans, or Homo sapiens. The results were published Wednesday in the journal Nature. Such an overlapping of two hominins in the fossil record is rare, which had previously led scientists to believe that Homo appeared after Australopithecus, rather than the two being contemporaries. Australopithecus species walked upright much like modern humans, but had relatively small brains, closer in size to those of apes. The emergence of Homo species, with their larger brains, is easy for people today to view as some sort of evolutionary upgrade on a path to modern humanity. But the coexistence of the two demonstrates that hominins developed, and lived, in multiple varieties at once. 'This new research shows that the image many of us have in our minds of an ape to a Neanderthal to a modern human is not correct — evolution doesn't work like that,' said study coauthor Kaye Reed, research scientist and president's professor emerita at the Institute of Human Origins and emeritus professor at the School of Human Evolution and Social Change at Arizona State University, via email. 'Here we have two hominin species that are together. And human evolution is not linear, it's a bushy tree, there are life forms that go extinct.' Since 2002, Reed has been a codirector of the Ledi-Geraru Research Project, which is focused, in part, on searching for evidence of early Homo species. In 2015, the team announced the discovery of the oldest known Homo jawbone at 2.8 million years old. It has also searched for later evidence of Australopithecus afarensis, which first appeared 3.9 million years ago, but there is no sign of these ancient human relatives in the fossil record after 2.95 million years ago — suggesting they went extinct before Homo's first appearance. Australopithecus afarensis is best represented by the famed fossilized remains of Lucy, discovered in 1974 in Ethiopia. Lucy was shorter than an average human, reaching about 3.3 feet (1 meter) in height, had an apelike face and a brain about one-third the size of a human brain. Her fossil showcased a mixture of humanlike and apelike traits and provided proof that ancient human relatives walked upright 3.2 million years ago. When the team discovered the Australopithecus teeth during two separate digs in 2018 and 2020, it compared them with species such as afarensis and another hominin group known as garhi, but they didn't match up. Instead, the scientists believe the teeth belong to a previously unknown species of Australopithecus that walked the Earth after Lucy — and alongside an early Homo species. 'Once we found Homo, I thought that was all we would find, and then one day on survey, we found the Australopithecus teeth,' Reed said. 'What is most important, is that it shows again, that human evolution is not linear. There were species that went extinct; some were better adapted than others, and others interbred with us — we know this for Neanderthals for sure. So anytime that we have another piece to the puzzle of where we came from, it is important.' The teeth were found in Ethiopia's Afar region, a key place for researchers seeking answers about human evolution. A variety of preserved fossils have been found there as well as some of the earliest stone tools, Reed said. The Afar region is an active rifting environment — the tectonic plates beneath its earth are actively pulling apart and exposing older layers of sediment that shed light on almost 5 million years of evolution, Reed said. 'The continent is quite literally unzipping there, which creates a lot of volcanism and tectonics,' said study coauthor Christopher Campisano, associate director and associate professor at the Institute of Human Origins and associate professor at the School of Human Evolution and Social Change at Arizona State, in a video the school released. 'At 2 1⁄2, 3 million years ago, these volcanoes spewed out ash that contain crystals called feldspars that allow us to date the eruptions that were happening on the landscape when they're deposited.' The Australopithecus teeth documented in the new study were dated to 2.63 million years ago, while the Homo teeth are from 2.59 million and 2.78 million years ago. But the team is cautious about identifying a species for any of the teeth until it has more data and more fossils. 'We know what the teeth and mandible of the earliest Homo look like, but that's it,' said Brian Villmoare, lead study author and associate professor in the department of anthropology at the University of Nevada, Las Vegas, in a statement. 'This emphasizes the critical importance of finding additional fossils to understand the differences between Australopithecus and Homo, and potentially how they were able to overlap in the fossil record at the same location.' The Australopithecus teeth broadly resembled those of the afarensis species in contour and the size of the molars, but features of the cusps and canine teeth had not been previously seen in afarensis or garhi teeth, Villmoare said. The teeth were also different in shape than those of any Homo species, or of the ancient human relative Paranthropus, known for its large teeth and chewing muscles. 'Obviously these are only teeth,' Villmoare said, 'but we are continuing field work in the hopes of recovering other parts of the anatomy that might increase resolution on the taxonomy.' Even just finding the teeth was a complicated task, according to Campisano. 'You're looking at little teeth, quite literally, individual teeth that look just like a lot of other of the little pebbles spread on the landscape,' he said in the video. 'And so, we have a great team of local Afars that are excellent fossil hunters. They've seen these things their entire lives walking around the landscape.' The new study is important because it provides insight into a time frame from 3 million to 2 million years ago, a mysterious period in human evolutionary studies, said Dr. Stephanie Melillo, paleoanthropologist and assistant professor at Mercyhurst University in Pennsylvania. Melillo was not involved in this research, but she has participated in the Woranso-Mille Paleontological Research Project in the Afar Triangle of Ethiopia. Part of the problem in learning about this stretch of prehistory is how ancient layers of dirt were deposited over the course of history in eastern Africa. 'Erosion in rivers and lakes were at a low level and only a little bit of dirt was deposited in the Afar,' Melillo wrote in an email. 'That deposited dirt contains the fossils — of our ancestors and all the animals that lived with us. When there is little deposition, there are few fossils.' A key feature helping archaeologists to understand humanity's evolution are structural basins, or 'bowls' on Earth's surface that naturally collect layers of sediment better than the surrounding landscape does — like the Turkana Basin stretching across southern Ethiopia and northern Kenya, Melillo said. Previous research has found evidence to suggest that Homo and Paranthropus coexisted there 1.5 million years ago. The new study focuses on the Afar Depression, a basin to the north of the Turkana. 'This contribution by Villmoare and colleagues demonstrates that in the Afar there was also some other species around with Homo — but it isn't Paranthropus,' Melillo said. 'Instead, they identify this 'non-Homo' genus as Australopithecus. They do a very convincing job of demonstrating why the new fossils are not Paranthropus.' The study adds to growing evidence that Australopithecus was not roaming the Afar Depression alone, she said. When Australopithecus and Homo were alive, the Afar Region, now mostly a semidesert, had much more seasonal variation in rainfall than it does today, Reed said. Millions of years ago, the environment there was still dominated by a dry season, but it was interrupted by a brief wet season. Rivers that carried water across the landscape existed for only part of the year. Few trees grew near the river, and the environment nearby was largely wetlands and grasslands. 'We have a fossil giraffe species that was eating grass, which probably indicates they were stressed as they eat trees and bushes almost every place else,' Reed said. 'Were the hominins eating the same thing? We are trying to find out by examining isotopes in their teeth and microscopic scratches on their teeth.' Understanding whether or not Homo and Australopithecus had the same food sources could paint a portrait of how our ancient ancestors shared or competed for resources, Reed said. The team also wants to try to identify which hominin made the stone tools found at the site. At the moment it's impossible to tell exactly how the two hominins coexisted, but Reed said she is hoping that future findings will provide more answers. 'Whenever you have an exciting discovery, if you're a paleontologist, you always know that you need more information,' Reed said. 'You need more fossils. More fossils will help us tell the story of what happened to our ancestors a long time ago — but because we're the survivors we know that it happened to us.' Sign up for CNN's Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store