logo
Webb Catches Mysterious Light Flares Around Milky Way's Supermassive Black Hole

Webb Catches Mysterious Light Flares Around Milky Way's Supermassive Black Hole

Yahoo20-02-2025
Between spotting galaxies that shouldn't exist, capturing the interstellar medium with unprecedented clarity, and identifying new worlds, the James Webb Space Telescope is a busy observatory. But as it orbits the Sun, Webb has kept a close eye on one of the most obscure pieces of our galaxy: Sagittarius A*, the supermassive black hole at the center of the Milky Way. By capturing the longest and most detailed Sag A* observations yet, Webb has allowed astronomers to catch a constant light show around the black hole's accretion disk, which draws in Sag A*'s cosmic meals.
In a study published Tuesday in The Astrophysical Journal Letters, an international team of researchers from several space science organizations shared that Webb's NIRCam (Near-InfraRed Camera) spotted many pops of light near Sag A* across 48 hours of observation. These flashes, which varied in strength, appeared to flare from the inner edge of the black hole's accretion disk.
Flares aren't unusual near supermassive black holes, so on its own, the identification of light flares around Sag A* wouldn't have been particularly exciting. What was odd about the team's findings was that Sag A*'s light show never appeared to stop, even as the team studied the flashes over seven 8-to-10-hour observation periods between 2023 and 2024. The only variables they noticed were in wavelength and length of time—data that, thanks to NIRCam's dual modules, could be captured simultaneously during a single session.
"Flares are expected to happen in essentially all supermassive black holes, but our black hole is unique," said astrophysicist and lead study author Farhad Yusef-Zadeh in a Northwestern University statement. "It is always bubbling with activity and never seems to reach a steady state. We observed the black hole multiple times…and we noticed changes in every observation. We saw something different each time, which is really remarkable. Nothing ever stayed the same."
Yusef-Zadeh and his colleagues believe the flares could be the product of the same phenomenon that produces sporadic flashes near other black holes: feisty accretion disks. These swirling disks of gas and dust gravitationally pull matter toward the black hole, eventually tipping that material past the point of no return (the black hole's event horizon). This steady stream of snacks allows the black hole to grow in mass. Every now and then, turbulence within the accretion disk squeezes the disk's plasma, triggering a quick burst of radiation.
"It's similar to how the Sun's magnetic field gathers, compresses, and then erupts a solar flare," Yusef-Zadeh told NASA. "Of course, the processes are more dramatic because the environment around a black hole is much more energetic and much more extreme. But the Sun's surface also bubbles with activity."
But an even more powerful force could be behind Sag A*'s larger flares. When two magnetic fields collide in space, they release energy in the form of accelerated particles. These particles travel so fast that they emit bright bursts of radiation, according to NASA. If "magnetic reconnection events" are happening in Sag A*'s accretion disk, that could explain the more aggressive pops of light.
In the future, the researchers hope to use Webb's NIRCam to observe Sag A* for 24 hours straight. Only a long, uninterrupted period like this would allow the team to see whether the accretion disk's light show is based on any particular pattern or is truly random.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

James Webb Finds Evidence of Free-Floating Planets So Large They Can Gather Their Own Planetary Systems
James Webb Finds Evidence of Free-Floating Planets So Large They Can Gather Their Own Planetary Systems

Yahoo

time9 hours ago

  • Yahoo

James Webb Finds Evidence of Free-Floating Planets So Large They Can Gather Their Own Planetary Systems

So much for heliocentrism. An international team of astronomers using observations made with the James Webb Space Telescope have found evidence of massive planets out there that're capable of forming their own planetary systems — without a star. These planets would be the center of something like a mini version of our solar system where other, smaller planets revolve around it. But without the light of a star, these systems, if they exist, would go largely overlooked by our telescopes, lost to the dark void of space. The work, a new study accepted for publication in the The Astronomical Journal, focuses on free-floating "rogue" planets which are not gravitationally bound to a star. While some rogue planets are first formed around a stellar object before being ejected from their system, the astronomers believe these ones may have formed from the same mechanism that gives birth to stars. "These discoveries show that the building blocks for forming planets can be found even around objects that are barely larger than Jupiter and drifting alone in space," lead author Belinda Damian, an astronomer at the University of St Andrews in Scotland, said in a statement about the work. "This means that the formation of planetary systems is not exclusive to stars but might also work around lonely starless worlds." Using James Webb observations taken between August and October 2024, the astronomers examined eight free-floating planets. With masses between five to ten times that of Jupiter, these belong to a class of objects believed to be the lowest mass objects that form from the collapse of the giant gas clouds that are sometimes referred to as stellar nurseries, as they're typically associated with star formation. For one reason or another, these objects didn't accumulate enough mass to sustain nuclear fusion reactions in their cores and become proper stars. These shouldn't be confused with brown dwarfs, however, which are much more massive substellar objects that are dozens of times heavier than Jupiter that also fail to kickstart nuclear fusion, earning them the moniker of "failed" stars. In this latest work, the astronomers detected excess emissions in the infrared spectra of these objects, showing that six of them have emissions associated with warm dust. This indicates the presence of a disk, or a circumstellar cloud of gas and dust that surrounds the planet. In itself, this isn't unusual, and such disks have been detected around rogue planets before. Around stars, these disks, referred to as protoplanetary disks, are where dense regions of gas and dust can coalesce to form planets, and are the leftover material from the star's formation which didn't get sucked into its collapsing core. But the kicker here is that the scientists have detected signs that the rogue planets' disks are already exhibiting the crucial first steps of planetary formation in the form of harboring silicate grains, which appear to be growing and crystallizing. These dusty grains can clump together to form planetesimals, the large, solid objects that are the building blocks of a baby planet. This is the first detection of silicate grains around a planetary mass object, the authors said. And it pairs tantalizingly with their previous study which showed that the rogue planet disks can last for millions of years, providing more than enough time to incubate inchoate worlds. "Taken together, these studies show that objects with masses comparable to those of giant planets have the potential to form their own miniature planetary systems," coauthor Aleks Scholz, who is also a St Andrews astronomer, said in the statement. "Those systems could be like the solar system, just scaled down by a factor of 100 or more in mass and size. Whether or not such systems actually exist remains to be shown." Ironically, then, maybe our ancestors weren't totally off the mark with their whole geocentrism fixation — they just had the wrong planetary system in mind. More on exoplanets: James Webb Spots Planets Forming Into Solar System in Real Time, Like an Organism's First Cells Solve the daily Crossword

Astronomers Say They've Finally Solved the 'Little Red Dots' Mystery
Astronomers Say They've Finally Solved the 'Little Red Dots' Mystery

Yahoo

time11 hours ago

  • Yahoo

Astronomers Say They've Finally Solved the 'Little Red Dots' Mystery

When the James Webb Space Telescope first came online in 2022, it immediately spotted something astronomers had never seen before: "little red dots" peppering the ancient expanse of deep space, originating from around when the universe was just one billion years old. Ever since, we've struggled to explain what these faint signals could be. The prevailing theory is that they're some kind of extremely compact galaxy. But at only two percent of the diameter of the Milky Way, the distribution of stars would have to be impossibly dense, perhaps more so than our current laws of physics allow. They're also too faint to be produced by a quasar, a type of supermassive black hole that is actively devouring matter, which it causes to heat up and glow. Moreover, the black holes would be "overmassive" for such a small galaxy, scientists argue. Now, famed Harvard astronomer Avi Loeb (or infamous, depending on how you view his speculative theories regarding aliens) and his colleague Fabio Pacucci believe they have an answer. In a new study published in the Astrophysical Journal Letters, the pair reinforce the idea that the family of red oddities are, in fact, galaxies — but are unusually tiny because they haven't started spinning up to speed yet. It's a hypothesis rooted in one of the leading theories for galaxy formation, which holds that these structures form in "halos" of dark matter, the invisible substance thought to account for 85 percent of all mass in the cosmos. While we can't see or interact with dark matter, it does exert a significant gravitational influence, which explains how the largest structures in the cosmos came together and took shape. In the study, the astronomers propose that the diminutive galaxies formed in halos that just so happened to be among the slowest spinning in the cosmos, with 99 percent of halos spinning faster. The idea, in principle, is simple. If you held out a piece of rope in one hand and started spinning in place, the rope would stretch out and reach farther. But if you slowed down, the rope would slump to the ground. This hypothesis would explain why we're only seeing the dots at such a nascent period of the universe. Over time, the halos would inevitably speed up, and their constituent galaxies would expand. "Dark matter halos are characterized by a rotational velocity: some of them spin very slowly, and others spin more rapidly," Loeb said in a statement about the work. "We showed that if you assume the little red dots are typically in the first percentile of the spin distribution of dark matter halos, then you explain all their observational properties." It's a compelling theory — but it's not the only game in town. Recently, two teams of astronomers found clues that what we're witnessing may actually be an entirely new class of cosmic object: "black hole stars." Their work suggests the glowing dots are an active supermassive black hole surrounded by a vast and thick shell of gas. The intense radiation of the black hole heats up the shell, which absorbs most of the emissions, dimming the light to an outside observer. In many ways, it resembles a star blown up to epic proportions — except, instead of nuclear fusion powering the center, there's a voracious black hole churning through matter. Loeb and Pacucci's theory doesn't address whether these slow-spinning galaxies have a black hole at their center, but suggests that they could form one. "Low-spin halos tend to concentrate mass in the center, which makes it easier for a black hole to accrete matter or for stars to form rapidly," Pacucci said in the statement. The luminous red dots, he added, "might help us understand how the first black holes formed and co-evolved with galaxies in the early universe." More on space: Astronomers in Awe of Terrifying "Eye of Sauron" That's Pointed Straight at Earth Solve the daily Crossword

James Webb Space Telescope uncovers 300 mysteriously luminous objects. Are they galaxies or something else?
James Webb Space Telescope uncovers 300 mysteriously luminous objects. Are they galaxies or something else?

Yahoo

time2 days ago

  • Yahoo

James Webb Space Telescope uncovers 300 mysteriously luminous objects. Are they galaxies or something else?

When you buy through links on our articles, Future and its syndication partners may earn a commission. Hundreds of unexpectedly energetic objects have been discovered throughout the distant universe, possibly hinting that the cosmos was far more active during its infancy than astronomers once believed. Using deep-field images from NASA's James Webb Space Telescope (JWST), researchers at the University of Missouri identified 300 unusually bright objects in the early universe. While they could be galaxies, astronomers aren't yet sure what they are for certain. Galaxies forming so soon after the Big Bang should be faint, limited by the pace at which they could form stars. Yet these candidates shine far brighter than current models of early galaxy formation predict. "If even a few of these objects turn out to be what we think they are, our discovery could challenge current ideas about how galaxies formed in the early universe — the period when the first stars and galaxies began to take shape," Haojing Yan, co-author of the study, said in a statement from the university. To discover these objects, the team applied a method called the "dropout" technique, which detects objects that appear in redder wavelengths but vanish in bluer, shorter-wavelength images. This indicates the objects are extremely distant, showing the universe as it was more than 13 billion years ago. To estimate distances, the team analyzed the objects' brightnesses across multiple wavelengths to infer redshift, age and mass. JWST's powerful Near-Infrared Camera and Mid-Infrared Instrument are designed to detect light from the farthest reaches of space, making them ideal for studying the early universe. "As the light from these early galaxies travels through space, it stretches into longer wavelengths — shifting from visible light into infrared," Yan said in the statement. "This stretching, called redshift, helps us determine how far away these galaxies are. The higher the redshift, the closer the galaxy is to the beginning of the universe." Next, the researchers hope to use targeted spectroscopic observations, focusing on the brightest sources. Confirming the newly found objects as genuine early galaxies would refine our current understanding of how quickly the first cosmic structures formed and evolved — and add to the growing list of transformative discoveries made by the JWST since it began observing the cosmos in 2022. The findings were published June 27 in The Astrophysical Journal. Solve the daily Crossword

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store