logo
Scientists baffled by mystery sphere in space that could provide 'rare' universe insight

Scientists baffled by mystery sphere in space that could provide 'rare' universe insight

Business Mayor26-05-2025
An incredible phenomenon in the depths of our galaxy has left scientists baffled. A perfectly spherical object, lying trillions of miles away from Earth but still in our Milky Way galaxy, has dumbfounded experts.
Featuring 'remarkable circular symmetry', the sphere is defying space theories and going against the logic of what scientists thought they knew about the universe. Experts have named the sphere 'Teleios', which means 'complete' or 'perfect' in ancient Greek and refers to its perfect shape.
It was first picked up by Australia's ASKAP telescope and is estimated to measure up to 157 light years wide.
Estimate to be either 7,100 or 25,100 light years from Earth, the researchers' calculations are the equivalent of thousands of trillions of miles.
The technology, named the Australian Square Kilometre Array Pathfinder (ASKAP), refers to an array of radio telescopes set in the country's Western Australia desert.
Of the sphere, an international team of scientists said: 'The most obvious characteristic of Teleios is its remarkable circular symmetry, coupled with a low surface brightness.'
Writing for The Conversation, they added: 'Teleios [is] named from the Greek Τελεɩοσ ('perfect') for its near-perfectly circular shape.
'This unique object has never been seen in any wavelength, including visible light, demonstrating ASKAP's incredible ability to discover new objects.'
Researchers are not sure exactly what the sphere is composed of, but theories of what it might be include a 'supernova remnant', a term for debris left over after a supernova.
That process is where a star explodes and launches debris and particles into space, which would mean the sphere could be made up of elements including carbon, oxygen, neon and silicon.
The experts said: 'Remarkably, Teleios has retained its symmetrical shape as it aged even to such a diameter.
'The shape indicates Teleios has remained relatively untouched by its environment. This presents us with an opportunity to make inferences about the initial supernova explosion, providing rare insight into one of the most energetic events in the universe.'
They said it could also be a stellar-wind bubble – a large cavity of gas launched by the upper atmosphere of a star.
However, the scientists warned that the sphere needs more investigation before the sphere's nature can be confirmed.
READ SOURCE
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Scientists raise red flags over hidden risks of popular garden plant: 'Should serve as a bright yellow warning'
Scientists raise red flags over hidden risks of popular garden plant: 'Should serve as a bright yellow warning'

Yahoo

time2 days ago

  • Yahoo

Scientists raise red flags over hidden risks of popular garden plant: 'Should serve as a bright yellow warning'

Golden oyster mushrooms, with their bright yellow caps and nutty flavor, have exploded in popularity among home gardeners for being easy to grow and packed with health benefits. But new research has suggested that this trend could be fueling an environmental threat, according to The Conversation. Scientists warn that the species is spreading into the wild and disrupting native ecosystems — a development that "should serve as a bright yellow warning" that non-native fungi should be grown with great care, if at all. What's happening? The recent study found that golden oyster mushrooms, originally native to Asia, have become invasive in North American forests. By collecting and analyzing fungal DNA from trees around Madison, Wisconsin, the researchers discovered that trees colonized by golden oysters housed only half as many fungal species as unaffected trees — sometimes even less. According to the research, which was originally published in Cell's Current Biology journal, some native fungi, such as the mossy maze polypore, elm oyster, and the chemically rich Nemania serpens, were completely pushed out. The sharp decline in fungal diversity is a strong indicator that golden oysters are outcompeting native fungi for critical resources, altering the delicate balance of forest life. Why are invasive mushrooms concerning? Fungi play an essential role in keeping ecosystems healthy for humans and other organisms. They break down dead organic material, recycle nutrients, form symbiotic relationships with plants, and help sequester carbon in the soil. When an invasive species like the golden oyster mushroom takes hold, it can decimate native fungal communities that have evolved over centuries to support local forests, as The Conversation explained. As the native fungi are pushed out, forests may become more vulnerable to disease, biodiversity loss, and nutrient imbalances. This is an even more concerning problem in regions already stressed by climate change and habitat destruction. This disruption doesn't just affect trees and soil. Protecting native fungi and other species helps safeguard natural resources, food webs, and even the resilience of forest ecosystems against emerging threats. Would you live in a house made of fungus? Heck yes No way Maybe Only if you paid me Click your choice to see results and speak your mind. What's being done about invasive mushrooms? In The Conversation, study author Aishwarya Veerabahu recommended that mushroom growers and hobbyists avoid using golden oyster mushroom grow kits. Cultivating them indoors only and disposing of all substrate material responsibly was one suggested alternative to completely avoiding them. Commercial sellers can also include labeling to inform buyers about the species' invasive potential. Those eager to grow mushrooms at home can try cultivating native fungi from their local area. Choosing native species supports biodiversity and helps maintain the unique ecological networks your region depends on. Long-term solutions may include developing sporeless strains of golden oyster mushrooms or using biological controls, such as targeted mycoviruses. In the meantime, public awareness and responsible cultivation are vital to preventing further spread. As golden oysters continue spreading in North America and begin showing up in forests in Europe, Africa, and beyond, Veerabahu expressed hope that the research encourages more thoughtful approaches to growing and managing mushrooms. Join our free newsletter for good news and useful tips, and don't miss this cool list of easy ways to help yourself while helping the planet. Solve the daily Crossword

Researchers discover 2,500-year-old honey residue in ancient bronze jars
Researchers discover 2,500-year-old honey residue in ancient bronze jars

Fox News

time5 days ago

  • Fox News

Researchers discover 2,500-year-old honey residue in ancient bronze jars

Researchers recently made a sticky discovery. They found 2,500-year-old honey, sealed in a vessel and buried underground for nearly three millennia. The residue was found in bronze jars at an underground shrine in Paestum, an ancient Greek settlement in modern-day Campania, Italy. The artifacts date back to the 6th century B.C. The jars were first found by archaeologists in 1954, but the residue in them has eluded experts – until now. In a study published by the American Chemical Society on July 30, experts concluded that the waxy residue was once honey. Luciana Carvalho, a research associate at the University of Oxford, told Fox News Digital the substance bears little resemblance to the golden honey in most modern-day cupboards. "Ancient honey was quite different from the clear, smooth honey we buy today," she noted. "There was no ultra‑filtration, no pasteurization and no synthetic pesticides in the landscape." The chemical results "strongly" suggested that the jars held raw honeycomb, rather than a blended product like most modern honey. "If honey had been mixed with milk, for example, we would expect to see extra fatty acids in the residue – and we don't," she said. But the raw honeycomb has dramatically changed over the millennia. Along with fellow researchers Elisabete Pires and James McCullagh, Carvalho found that the sugar gradually became dark and acidic. "After 2,500 years, almost all the original sugars have broken down [and been] eaten by microbes, so the residue isn't sweet anymore." "[The] sugars slowly reacted with proteins in a kind of slow-motion browning process, similar to what happens when bread bakes, turning it darker and more acidic," she said. Because of that, the remaining residue isn't exactly pleasant to eat, according to the expert. "What survives now is a waxy residue with a slight tang and virtually no sweetness," Carvalho noted. "After 2,500 years, almost all the original sugars have broken down [and been] eaten by microbes, so the residue isn't sweet anymore." As for the vessels, Carvalho said the bronze jars have cork discs that seal their necks, which points to "careful storage of something valuable." The copper-alloy jugs were found in a sealed, underground shrine, suggesting that they were left there as part of a ritual. "Inside, the residue clung to the bottoms and sides, exactly what you'd expect if raw honeycomb had been placed inside and slowly dried out over centuries," she said. "We hope our approach will be used to identify honey residues in other museum collections so we can learn more about ancient beekeeping and the role of honey in diet, medicine and ritual life." Researchers in the 1980s previously believed that the honey was a mixture of wax, fat and resin, with Carvalho noting that past research was limited by less precise tools. "Those methods were great for detecting fats and waxes but couldn't easily pick up sugars or proteins without extra chemical steps," she said. "In our study we used multiple modern techniques designed to detect different types of molecules, including sugars and proteins, even if these are present at trace levels, with instruments far more sensitive than anything available in the 1980s." She also noted that the discovery had strong collaboration from multiple groups, including museum curators, conservators and specialized scientists. "We hope our approach will now be used to identify honey residues in other museum collections so we can learn more about ancient beekeeping and the role of honey in diet, medicine and ritual life," Carvalho said. The latest research adds to a number of ancient food-related discoveries this year, which are extremely rare occurrences. In Guam, 3,500-year-old rice was recently found, making it the earliest known evidence of rice in Remote Oceania. Earlier in 2025, archaeologists uncovered a well-preserved loaf of ancient bread in Turkey, dating back to the Bronze Age.

Light pollution is encroaching on observatories around the globe – making it harder for astronomers to study the cosmos
Light pollution is encroaching on observatories around the globe – making it harder for astronomers to study the cosmos

Yahoo

time6 days ago

  • Yahoo

Light pollution is encroaching on observatories around the globe – making it harder for astronomers to study the cosmos

When you buy through links on our articles, Future and its syndication partners may earn a commission. This article was originally published at The Conversation. The publication contributed the article to Expert Voices: Op-Ed & Insights. Outdoor lighting for buildings, roads and advertising can help people see in the dark of night, but many astronomers are growing increasingly concerned that these lights could be blinding us to the rest of the universe. An estimate from 2023 showed that the rate of human-produced light is increasing in the night sky by as much as 10% per year. I'm an astronomer who has chaired a standing commission on astronomical site protection for the International Astronomical Union-sponsored working groups studying ground-based light pollution. My work with these groups has centered around the idea that lights from human activities are now affecting astronomical observatories on what used to be distant mountaintops. Hot science in the cold, dark night While orbiting telescopes like the Hubble Space Telescope or the James Webb Space Telescope give researchers a unique view of the cosmos – particularly because they can see light blocked by the Earth's atmosphere – ground-based telescopes also continue to drive cutting-edge discovery. Telescopes on the ground capture light with gigantic and precise focusing mirrors that can be 20 to 35 feet (6 to 10 meters) wide. Moving all astronomical observations to space to escape light pollution would not be possible, because space missions have a much greater cost and so many large ground-based telescopes are already in operation or under construction. Around the world, there are 17 ground-based telescopes with primary mirrors as big or bigger than Webb's 20-foot (6-meter) mirror, and three more under construction with mirrors planned to span 80 to 130 feet (24 to 40 meters). The newest telescope starting its scientific mission right now, the Vera Rubin Observatory in Chile, has a mirror with a 28-foot diameter and a 3-gigapixel camera. One of its missions is to map the distribution of dark matter in the universe. To do that, it will collect a sample of 2.6 billion galaxies. The typical galaxy in that sample is 100 times fainter than the natural glow in the nighttime air in the Earth's atmosphere, so this Rubin Observatory program depends on near-total natural darkness. Any light scattered at night – road lighting, building illumination, billboards – would add glare and noise to the scene, greatly reducing the number of galaxies Rubin can reliably measure in the same time, or greatly increasing the total exposure time required to get the same result. The LED revolution Astronomers care specifically about artificial light in the blue-green range of the electromagnetic spectrum, as that used to be the darkest part of the night sky. A decade ago, the most common outdoor lighting was from sodium vapor discharge lamps. They produced an orange-pink glow, which meant that they put out very little blue and green light. Even observatories relatively close to growing urban areas had skies that were naturally dark in the blue and green part of the spectrum, enabling all kinds of new observations. Then came the solid-state LED lighting revolution. Those lights put out a broad rainbow of color with very high efficiency – meaning they produce lots of light per watt of electricity. The earliest versions of LEDs put out a large fraction of their energy in the blue and green, but advancing technology now gets the same efficiency with "warmer" lights that have much less blue and green. Nevertheless, the formerly pristine darkness of the night sky now has much more light, particularly in the blue and green, from LEDs in cities and towns, lighting roads, public spaces and advertising. The broad output of color from LEDs affects the whole spectrum, from ultraviolet through deep red. The U.S. Department of Energy commissioned a study in 2019 which predicted that the higher energy efficiency of LEDs would mean that the amount of power used for lights at night would go down, with the amount of light emitted staying roughly the same. But satellites looking down at the Earth reveal that just isn't the case. The amount of light is going steadily up, meaning that cities and businesses were willing to keep their electricity bills about the same as energy efficiency improved, and just get more light. Natural darkness in retreat As human activity spreads out over time, many of the remote areas that host observatories are becoming less remote. Light domes from large urban areas slightly brighten the dark sky at mountaintop observatories up to 200 miles (320 kilometers) away. When these urban areas are adjacent to an observatory, the addition to the skyglow is much stronger, making detection of the faintest galaxies and stars that much harder. When the Mt. Wilson Observatory was constructed in the Angeles National Forest near Pasadena, California, in the early 1900s, it was a very dark site, considerably far from the 500,000 people living in Greater Los Angeles. Today, 18.6 million people live in the LA area, and urban sprawl has brought civilization much closer to Mt. Wilson. When Kitt Peak National Observatory was first under construction in the late 1950s, it was far from metro Tucson, Arizona, with its population of 230,000. Today, that area houses 1 million people, and Kitt Peak faces much more light pollution. Even telescopes in darker, more secluded regions – like northern Chile or western Texas – experience light pollution from industrial activities like open-pit mining or oil and gas facilities. The case of the European Southern Observatory An interesting modern challenge is facing the European Southern Observatory, which operates four of the world's largest optical telescopes. Their site in northern Chile is very remote, and it is nominally covered by strict national regulations protecting the dark sky. AES Chile, an energy provider with strong U.S. investor backing, announced a plan in December 2024 for the development of a large industrial plant and transport hub close to the observatory. The plant would produce liquid hydrogen and ammonia for green energy. Even though formally compliant with the national lighting norm, the fully built operation could scatter enough artificial light into the night sky to turn the current observatory's pristine darkness into a state similar to some of the legacy observatories now near large urban areas. This light pollution could mean the facility won't have the same ability to detect and measure the faintest galaxies and stars. RELATED STORIES — Light pollution poses serious threat to astronomy, skywatching and more, study says — Best light pollution filters for astrophotography 2025 — World's largest telescope threatened by light pollution from renewable energy project Light pollution doesn't only affect observatories. Today, around 80% of the world's population cannot see the Milky Way at night. Some Asian cities are so bright that the eyes of people walking outdoors cannot become visually dark-adapted. In 2009, the International Astronomical Union declared that there is a universal right to starlight. The dark night sky belongs to all people – its awe-inspiring beauty is something that you don't have to be an astronomer to appreciate. This article is republished from The Conversation under a Creative Commons license. Read the original article.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store