logo
Are dire wolves de-extinct? Genetically engineered pups spark controversy

Are dire wolves de-extinct? Genetically engineered pups spark controversy

Yahoo09-04-2025
Three genetically engineered wolves that may resemble extinct dire wolves are trotting, sleeping and howling in an undisclosed secure location in the U.S., according to the company that aims to bring back lost species.
The wolf pups, which range in age from three to six months old, have long white hair, muscular jaws and already weigh in at around 80 pounds — on track to reach 140 pounds at maturity, researchers at Colossal Biosciences reported Monday.
Dire wolves, which went extinct more than 10,000 years old, are much larger than gray wolves, their closest living relatives today.
Independent scientists said this latest effort doesn't mean dire wolves are coming back to North American grasslands any time soon.
'All you can do now is make something look superficially like something else'— not fully revive extinct species, said Vincent Lynch, a biologist at the University at Buffalo who was not involved in the research.
Colossal scientists learned about specific traits that dire wolves possessed by examining ancient DNA from fossils. The researchers studied a 13,000 year-old dire wolf tooth unearthed in Ohio and a 72,000 year-old skull fragment found in Idaho, both part of natural history museum collections.
Then the scientists took blood cells from a living gray wolf and used CRISPR to genetically modify them in 20 different sites, said Colossal's chief scientist Beth Shapiro. They transferred that genetic material to an egg cell from a domestic dog. When ready, embryos were transferred to surrogates, also domestic dogs, and 62 days later the genetically engineered pups were born.
Colossal has previously announced similar projects to genetically alter cells from living species to create animals resembling extinct woolly mammoths, dodos and others.
Though the pups may physically resemble young dire wolves, 'what they will probably never learn is the finishing move of how to kill a giant elk or a big deer,' because they won't have opportunities to watch and learn from wild dire wolf parents, said Colossal's chief animal care expert Matt James.
Colossal also reported today that it had cloned four red wolves using blood drawn from wild wolves of the southeastern U.S.'s critically endangered red wolf population. The aim is to bring more genetic diversity into the small population of captive red wolves, which scientists are using to breed and help save the species.
This technology may have broader application for conservation of other species because it's less invasive than other techniques to clone animals, said Christopher Preston, a wildlife expert at the University of Montana who was not involved in the research. But it still requires a wild wolf to be sedated for a blood draw and that's no simple feat, he added.
Colossal CEO Ben Lamm said the team met with officials from the U.S. Interior Department in late March about the project. Interior Secretary Doug Burgum praised the work on X on Monday as a 'thrilling new era of scientific wonder' even as outside scientists said there are limitations to restoring the past.
'Whatever ecological function the dire wolf performed before it went extinct, it can't perform those functions' on today's existing landscapes, said Buffalo's Lynch.
Copyright 2025 Nexstar Media, Inc. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Scientists Found a Hidden Trigger That Could Make Your Eyes Regenerate
Scientists Found a Hidden Trigger That Could Make Your Eyes Regenerate

Yahoo

time4 hours ago

  • Yahoo

Scientists Found a Hidden Trigger That Could Make Your Eyes Regenerate

Here's what you'll learn when you read this story: Many groups in the animal kingdom have the remarkable ability to regenerate their eyes, but mammals are not one of them—at least, not yet. A new study analyzed the genetic mechanisms behind the ocular regenerative ability of the golden apple snail to see if a similar technique could be used in human eyes. Although separated by hundreds of millions of years of evolution, human eyes and apple snail eyes retain remarkable similarities, both physically and genetically. Talk to most freshwater biologists, and you likely won't find much love for the golden apple snail. An invasive species outside of South America, this freshwater snail (Pomacea canaliculata) is both extremely resilient and what is known as a prolific organism, meaning it makes a lot of babies. This is a one-two punch of bad news for conservationists. But in a strange twist of fate, these particular attributes of the golden apple snail—along with its impressive ability to regenerate its eyes when damaged—made it the perfect test subject for Alice Accorsi, an assistant professor of molecular and cellular biology at the University of California (UC) Davis. So much so, in fact, that Accorsi was surprised no other study had yet detailed exactly how these snails wield such impressive powers of regeneration. 'When I started reading about this, I was asking myself, why isn't anybody already using snails to study regeneration?' Accorsi, the lead author of the new study, said in a press statement. 'I think it's because we just hadn't found the perfect snail to study, until now. A lot of other snails are difficult or very slow to breed in the lab, and many species also go through metamorphosis, which presents an extra challenge.' In the experiment, Accorsi and her team developed methods to tweak the apple snail's genome, hoping to better understand why it can regrow its eyes—an enviable ability that vertebrates (including humans) can't seem to achieve. Although separated by more than 600 million years of evolution, humans and apple snails both have camera-type eyes that make use of a system of corneas, lens, and retinas. Accorsi also said that many of the genes that participate in human eye development can be found in these snails as well. An apple snail's ocular regeneration process takes a month from start to finish. In the first 24 hours, the amputated wound heals and unspecialized cells congregate in the area before building new ocular hardware. By day 15, all parts of the eye's structure (including the optic nerve) are present, but the snail requires a few more weeks to fully mature. During this incredible process, scientists analyzed gene expression in the snail's genome, and found that immediately upon amputation, 9,000 genes expressed themselves at different rates than they did in a normal apple snail. The team then used CRISPR/Cas9 techniques to edit a snail embryo's genome—specifically, a gene known as Pax6, which is also known to control the development of the brain and eye in humans. 'The idea is that we mutate specific genes and then see what effect it has on the animal, which can help us understand the function of different parts of the genome,' Accorsi said in a press statement. When the snail embryo had two non-functional copies of the gene—one from each parent—eyes didn't develop at all once the snail reached maturation. Future studies will investigate if the manipulation of the gene in adult snails similarly impacts regeneration. 'If we find a set of genes that are important for eye regeneration, and these genes are also present in vertebrates, in theory we could activate them to enable eye regeneration in humans,' Accorsi said in a press statement. The idea of regenerating human eyes isn't new. A study published earlier this year in the journal Nature Communications showed evidence of the 'first successful induction of long-term neural regeneration in mammalian retinas,' according to the researchers, by inhibiting the PROX1 protein that can block retinal cell types in animals, including ones that could help restore vision to those suffering from retinitis pigmentosa. Similarly, this research was inspired by the amazing eye-regenerating abilities of the zebrafish. We humans may be the one with the big brains of the animal kingdom, but the varied biology of Earth's incredible creatures still has so much to teach us. Get the Issue Get the Issue Get the Issue Get the Issue Get the Issue Get the Issue Get the Issue Get the Issue You Might Also Like Can Apple Cider Vinegar Lead to Weight Loss? Bobbi Brown Shares Her Top Face-Transforming Makeup Tips for Women Over 50 Solve the daily Crossword

Plate Tectonics
Plate Tectonics

National Geographic

timea day ago

  • National Geographic

Plate Tectonics

There are a few handfuls of major plates and dozens of smaller, or minor, plates. Six of the majors are named for the continents embedded within them, such as the North American, African, and Antarctic plates. Though smaller in size, the minors are no less important when it comes to shaping the Earth. The tiny Juan de Fuca plate is largely responsible for the volcanoes that dot the Pacific Northwest of the United States. The plates make up Earth's outer shell, called the lithosphere. (This includes the crust and uppermost part of the mantle.) Churning currents in the molten rocks below propel them along like a jumble of conveyor belts in disrepair. Most geologic activity stems from the interplay where the plates meet or divide. The movement of the plates creates three types of tectonic boundaries: convergent, where plates move into one another; divergent, where plates move apart; and transform, where plates move sideways in relation to each other. They move at a rate of one to two inches (three to five centimeters) per year. Convergent Boundaries Where plates serving landmasses collide, the crust crumples and buckles into mountain ranges. India and Asia crashed about 55 million years ago, slowly giving rise to the Himalaya, the highest mountain system on Earth. As the mash-up continues, the mountains get higher. Mount Everest, the highest point on Earth, may be a tiny bit taller tomorrow than it is today. These convergent boundaries also occur where a plate of ocean dives, in a process called subduction, under a landmass. As the overlying plate lifts up, it also forms mountain ranges. In addition, the diving plate melts and is often spewed out in volcanic eruptions such as those that formed some of the mountains in the Andes of South America. At ocean-ocean convergences, one plate usually dives beneath the other, forming deep trenches like the Mariana Trench in the North Pacific Ocean, the deepest point on Earth. These types of collisions can also lead to underwater volcanoes that eventually build up into island arcs like Japan. Divergent Boundaries At divergent boundaries in the oceans, magma from deep in the Earth's mantle rises toward the surface and pushes apart two or more plates. Mountains and volcanoes rise along the seam. The process renews the ocean floor and widens the giant basins. A single mid-ocean ridge system connects the world's oceans, making the ridge the longest mountain range in the world. On land, giant troughs such as the Great Rift Valley in Africa form where plates are tugged apart. If the plates there continue to diverge, millions of years from now eastern Africa will split from the continent to form a new landmass. A mid-ocean ridge would then mark the boundary between the plates. Mountains and a rift can be seen along the San Andreas Fault. Photograph by Lloyd Cluff, Corbis Transform Boundaries The San Andreas Fault in California is an example of a transform boundary, where two plates grind past each other along what are called strike-slip faults. These boundaries don't produce spectacular features like mountains or oceans, but the halting motion often triggers large earthquakes, such as the 1906 one that devastated San Francisco.

Here's How This Forgotten Healthcare Stock Could Generate Life-Changing Returns
Here's How This Forgotten Healthcare Stock Could Generate Life-Changing Returns

Yahoo

time2 days ago

  • Yahoo

Here's How This Forgotten Healthcare Stock Could Generate Life-Changing Returns

Key Points CRISPR Therapeutics' first approved therapy, Casgevy, was a breakthrough. One of Casgevy's biggest achievements may be demonstrating the viability of CRISPR Therapeutics' strategy. The biotech company could soar if it can follow up that win with more clinical and regulatory milestones. 10 stocks we like better than CRISPR Therapeutics › Over the past few years, the market hasn't been kind to somewhat speculative, unprofitable stocks. CRISPR Therapeutics (NASDAQ: CRSP), a mid-cap biotech, fits that description. The company's shares are down by 24% since mid-2022. The S&P 500 is up 50% over the same period. Despite this terrible performance, there are reasons to believe that CRISPR Therapeutics could still generate life-changing returns for investors willing to be patient. Here's how the biotech could pull it off. CRISPR Therapeutics' first success CRISPR Therapeutics' first approval was for Casgevy, a treatment for sickle cell disease (SCD) and transfusion-dependent beta-thalassemia (TDT), which it developed in collaboration with Vertex Pharmaceuticals. Before Casgevy, no CRISPR-based gene-editing medicine had been approved. While it became the first, it still faces some challenges. Ex vivo gene-editing therapies require a complex manufacturing and administration process that can only be performed in authorized treatment centers (ATCs). Moreover, they're expensive. Casgevy costs $2.2 million in the U.S. Getting third-party payers on board for that is no easy feat. Still, CRISPR Therapeutics and Vertex Pharmaceuticals are making steady progress. As of the second quarter, CRISPR Therapeutics had achieved its goal of activating 75 ATCs. It had also secured reimbursement for eligible patients in 10 countries. The two companies estimate there are roughly 60,000 eligible SCD and TDT patients in the regions they have targeted. Let's say they continue to strike reimbursement deals and can count on third-party coverage for 70% of this target population (42,000 people), then go on to treat another 30% of that group in the next decade (12,600 patients). Assuming they could extend that $2.2 million price tag to those countries, Casgevy could generate more than $27.7 billion over this period. Based on its agreement with Vertex, 40% would go to CRISPR Therapeutics, or roughly $11.1 billion over a decade. That's not bad, but it's not that impressive either. So, while Casgevy could contribute meaningfully to CRISPR Therapeutics' results -- and may even reach blockbuster status at some point -- the medicine may primarily serve as a proof of concept to demonstrate that the biotech's approach can be effective. Substantial progress with its first commercialized product will help the stock price. But the company's performance will depend even more on future clinical and regulatory milestones, especially as it shows with Casgevy that it can manage the intricacies and complexities of marketing gene-editing medicines. Can the pipeline deliver? CRISPR Therapeutics has six candidates in clinical trials, which isn't bad at all for a mid-cap biotech company. One of its leading programs is CTX310, a potential therapy designed to help reduce low-density lipoprotein (LDL) cholesterol in patients with certain conditions. CTX310 is already producing encouraging clinical trial results. Additionally, it's an in vivo medicine, meaning it bypasses the need to harvest patients' cells to manufacture therapies; in vivo gene-editing treatments are easier to handle than their ex vivo counterparts. The company's path to creating life-changing returns hinges on its ability to deliver consistent clinical and regulatory wins over the next few years for CTX310 and other important candidates. If CRISPR Therapeutics can successfully launch several new products in the next five to seven years, its shares are likely to skyrocket. In the meantime, under this scenario, the company would succeed in making gene-editing medicines more mainstream. This would encourage third-party payers to get on board -- and healthcare institutions, and perhaps even governments, to help push for more ATCs, since there'd be a greater need to accommodate these treatments. Can CRISPR Therapeutics achieve this? In my view, the biotech stock is on the riskier side, but does carry significant upside potential. There's a (small) chance the gene-editing specialist will deliver life-changing returns in the next decade, but investors need to hedge their bets. It's best to start by initiating a small position in the stock, then progressively add more if CRISPR Therapeutics lands more wins. Should you invest $1,000 in CRISPR Therapeutics right now? Before you buy stock in CRISPR Therapeutics, consider this: The Motley Fool Stock Advisor analyst team just identified what they believe are the for investors to buy now… and CRISPR Therapeutics wasn't one of them. The 10 stocks that made the cut could produce monster returns in the coming years. Consider when Netflix made this list on December 17, 2004... if you invested $1,000 at the time of our recommendation, you'd have $668,155!* Or when Nvidia made this list on April 15, 2005... if you invested $1,000 at the time of our recommendation, you'd have $1,106,071!* Now, it's worth noting Stock Advisor's total average return is 1,070% — a market-crushing outperformance compared to 184% for the S&P 500. Don't miss out on the latest top 10 list, available when you join Stock Advisor. See the 10 stocks » *Stock Advisor returns as of August 13, 2025 Prosper Junior Bakiny has positions in Vertex Pharmaceuticals. The Motley Fool has positions in and recommends CRISPR Therapeutics and Vertex Pharmaceuticals. The Motley Fool has a disclosure policy. Here's How This Forgotten Healthcare Stock Could Generate Life-Changing Returns was originally published by The Motley Fool

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store