Squirrels could be the key to getting us into deep space
What's the weirdest thing you learned this week? Well, whatever it is, we promise you'll have an even weirder answer if you listen to PopSci's hit podcast. The Weirdest Thing I Learned This Week hits Apple, Spotify, YouTube, and everywhere else you listen to podcasts every-other Wednesday morning. It's your new favorite source for the strangest science-adjacent facts, figures, and Wikipedia spirals the editors of Popular Science can muster. If you like the stories in this post, we guarantee you'll love the show.
By Lauren Leffer
Certain species of ground squirrels hibernate underground without any food or water for up to eight months of the year. It's a super-extreme survival strategy, enabled by a complicated cascade of physiological processes, some of which we understand and many of which scientists are still trying to figure out. Helping them along is funding and interest from heavy hitters in the research world like NASA, the European Space agency, and private aerospace companies, because–since the 1960's–those with their eyes on the stars have wondered if human hibernation could enable us to travel farther and more safely in space.Hibernation isn't just a long nap. It's closer to death than sleep. While in hibernation torpor, ground squirrels' endure up to a 95 percent reduction in their metabolic rate. Their heart and respiration rates drop to a few beats and breaths per minute. Their brain waves go flat. Their body temperatures plummet to near freezing for some species (or even below freezing for Arctic ground squirrels).
Yet amid all of this, the squirrels stay pretty healthy: maintaining muscle mass, reversing pre-hibernation diabetes, experiencing organ regeneration, stalling aging, and undergoing physiological shifts that can ward off things like radiation damage. For these reasons and more, scientists have been studying if we can harness the power of squirrel hibernation for ourselves. It could help propel us to outer reaches of the galaxy. Even if it doesn't, it's poised to fuel some big Earth-bound biomedical advances. Listen to learn more about squirrel-sicles, the challenges of long-distance space travel, and the ultimate in restorative rest. Or read all about it in this Popular Science feature article.
By John Green
Tuberculosis has been curable since the 1950s, yet it remains the deadliest infectious disease in the world, killing 1.5 million people each year. That's largely due to our failure to get treatment to those who need it. I talk all about how tuberculosis shaped the world—and how humanity has allowed it to thrive thanks to injustice and inequity—in my new book 'Everything is Tuberculosis: The History and Persistence of our Deadliest Infection.' On this week's episode of Weirdest Thing, I share the story of a man who became consumed with finding a cure for consumption.
In the 18th and 19th centuries, TB thrived in the crowded living and working conditions of industrializing cities, yet people believed it was an inherited disease, even romanticizing it as a mark of beauty and artistic sensitivity. James Watt, famed for his contributions to the steam engine, dedicated years to trying to cure TB after his children became ill with the disease. His failed contraption, which treated TB by pushing carbon dioxide into the lungs to reduce the amount of air there, was closer to viable than you might think: the bacteria that causes TB is highly aerobic, meaning it needs lots of oxygen to survive. Sometimes doctors actually collapse one lung to help patients recover from TB. That was much more common in the early 20th century, but it's a technique still employed for some treatment-resistant cases of TB today.
Today, despite being curable, TB still kills millions. And recent funding cuts threaten to worsen the spread of drug-resistant TB, raising the specter of a world where the disease regains its early 20th-century deadliness. If you want to learn more, you can find 'Everything is Tuberculosis: The History and Persistence of our Deadliest Infection' anywhere books are sold.
By Rachel Feltman
When Mount Vesuvius erupted in 79 CE, it buried thousands of people in ash, preserving eerie casts of their final moments. But one unfortunate resident may have been preserved in an even more extreme way—by having his brain turn to glass. Researchers recently confirmed that glassy black fragments found in a skull from the eruption are vitrified brain tissue, marking the only known case of an animal's tissue undergoing this process. It took a perfect storm of extreme heat and rapid cooling to make this happen, and it's unlikely to have ever happened before—or to ever happen again. Tune into this week's episode to learn how it all went down!
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
13 hours ago
- Yahoo
Fresno State professor has 2M Instagram followers. His content? 1,700 science toys
Every room in Ray Hall's home features some kind of science toy. Some of the Fresno State physics professor's vast array of toys are simple, like tippy tops that, when spun, suddenly flip to spin on their narrow stems. Others are more complex, like Tesla coils that generate lightning-like electrical currents. Hall's vast array of toys aren't only used in the classroom — they're the star attraction of one of Instagram's most popular science accounts. In his account @physicsfun, Hall shares demonstrations of these toys and explains the physics behind them to an audience of over 2 million followers. 'My goal is to get these toys into the hands of people because it's one thing to watch me manipulate them. But if they're excited enough to buy it and show it to their kids, show it to their friends. That's when the joy of physics starts to spread,' Hall said. Hall has over 1,700 physics toys. Some are less than $10 and others are worth several hundred dollars. Each of Hall's Instagram videos includes a caption linking to sources for further information. The videos follow a consistent formula: they're short and simple, with the toy clearly taking center stage. They demonstrate concepts like chaos theory, gyroscopic stability and magnetic levitation. 'Almost all of my Instagram videos, especially the ones I'm most proud of, make people go, 'What? That's how it works?'' Hall said. 'They get people more invested in science.' Hall also has a YouTube channel with 610,000 followers that he monetizes as well as a Facebook page with 731,000 followers. 'Everything I try to show on Instagram has that little element of surprise like you weren't expecting for that to necessarily happen,' Hall said. 'I also try to make my videos so that they're not overproduced. It's always my hands and I don't really talk to the camera. Hall first decided to share his toys on Instagram in 2015 after his stepdaughter posted a video of one of his tippy tops and it received a lot of likes from her high school friends. But his Instagram account only started growing significantly after his videos went viral on Reddit from 2016 to 2017. His following grew from 6,000 followers to 20,000 in three days. He reached 1 million followers by 2017. 'The biggest key to success on Instagram is continuity and that means having a daily post,' he said. 'YouTube is a different beast. I have someone who mashes up my videos and posts them for me because I just don't have the time.' Hall added that what motivates him to keep making videos is to keep trying to get more people curious about the world around them. 'It's more so a cheerleading to get them to think more deeply and go pursue further content,' he said. Hall's interest in physics dates back to his childhood. He grew up watching science documentaries and visiting museums like the Exploratorium in San Francisco. He recalls spending time with his father who worked for the Los Angeles Department of Water and Power and loved being in his tool shed. 'My dad was a jack of all trades, his garage was full of tools and he was always fixing stuff. I would hang around with him and he would explain to me how things worked,' Hall said. 'And physics I think is kind of the ultimate 'how do things work', so it appealed to me.' A first-generation college student, Hall studied physics at Fresno State, earning his bachelor's degree in 1988 and his doctorate from UC Riverside in 1994. His research focused on high energy particle physics. It was around that time that he came across some physics toys at a shop in Occidental and started collecting them. 'Back when I was a grad student, I did have some teaching responsibilities,' Hall said. 'So it hit me when I was at that shop that sold kites and other toys that I could really teach physics with them.' After grad school, Hall got a job at Fresno State and has been a physics professor at the university since 1999. He teaches physics along with critical thinking classes for students who aren't planning to pursue careers as scientists. 'My passion now is trying to convince people that science is a lot more interesting than pseudo science. There's a lot of awful belief in things, like that the Earth is flat, and people that take it seriously. That concerns me,' he said. 'It seems like there's a fundamental misunderstanding on what science is trying to do.' As for the future of his social media content, Hall said he may explore new formats — possibly videos where he speaks directly to the camera. He also plans to keep searching for new physics toys. 'I'm taking everything one day at a time and I'm not looking to stop,' he said.
Yahoo
a day ago
- Yahoo
Apple Watch 圈圈真的準?美國有研究指 Apple Watch 部份運動數據追蹤表現準度不足
Yahoo購物節,6月2至13日正式舉行!集合全球精選著數的網上大型購物節:波鞋低至36折、手袋低至4折、自助餐半價、旅遊產品買一送一等,更有獨家優惠為您而設,把握限時兩星期優惠,1Click買盡全世界! 早前消委會就發表智能手錶評測報告,強調智能手錶、手環的運動數據都是估算,只適宜作參考之用。其實智能手錶在追蹤不同數據時準度的確存在著誤差。最近美國就有研究指 Apple Watch 於運動時記錄燃燒了多少卡路里的數據,準度並不是想像中的高。 美國密西西比大學的研究人員做了一個關於 Apple Watch 的研究,分析了 56 數據得出一個整合分析,並以 Apple Watch 每一項的表現都與標準的醫療級工具進行了比較。結果顯示 Apple Watch 於測量心率及步數方面極大部份情況下是準確的。研究人員指,測心率與步數的平均絕對百分比誤差(即衡量準確度的標準指標)分別為 4.43% 與 8.17%,然而估算燃燒了卡路里數據表現就達 27.96%。對於一般大眾買到的穿戴式裝置而言,低於 10% 的誤差值表現已被視為「十分優秀」,但研究團隊測試 Apple Watch 在走路、跑步、混合強度訓練和踩單車等多種活動中計算用戶燃燒了多少卡路里的數據時,卻發現其估算值大幅超出可接受範圍。 不過研究人員同時指出,這個數據本身就相當難以估算,因為涉及許多變數如體重及運動方式等等。因此,不要把每個數字都當作 100% 準確,而是可當成其中一種鼓勵的工具,達至恆常運動、保持追蹤習慣並維持動力。團隊還指出,目前 Apple Watch 的準確度已提高了不少,顯示蘋果在硬體及演算法方面都在逐步改進,而指出弱點可幫助開發者獲得更真實的回應建議,協助他們進一步研究,以製出更好的感應器或演算法,提升智能手錶追蹤健康數據的表現。 更多內容: 9to5mac 消委會試智能手錶運動偵測,Garmin 最貴最高分,一款千元級高評分!Apple、Samsung、華為各有高低 智能手錶推薦 2025 | Apple、三星、Garmin 如何選?三鐵、跑山、單車各有不同,睇清楚點揀! 緊貼最新科技資訊、網購優惠,追隨 Yahoo Tech 各大社交平台! 🎉📱 Tech Facebook: 🎉📱 Tech Instagram: 🎉📱 Tech WhatsApp 社群: 🎉📱 Tech WhatsApp 頻道: 🎉📱 Tech Telegram 頻道:


National Geographic
2 days ago
- National Geographic
Explore the vast ocean in 25 spectacular photos
National Geographic Explorers, Kim Bernard (right), Jane Young (middle) and Bernard's team member and PhD student, Rachel Kaplan (left), observe Antarctic krill collected by ROV Subastian in Weddell Sea, Southern Ocean, seashore to seafloor and from pole to pole, Perpetual Planet Ocean Expeditions examine the causes and impacts of marine systems change throughout the largest and most vital ecosystem on Earth – the Ocean – while generating bold and innovative solutions in partnership with the coastal communities whose lives and livelihoods depend on it. The multi-year exploration of all five basins of the world's ocean – Arctic, Southern, Pacific, Atlantic and Indian – anchored by 20+ National Geographic Explorers, leverages several science disciplines, local ecological knowledge and world-class storytelling to reveal the diversity and connectivity of unique and vulnerable marine ecosystems while scaling bold and innovative solutions to help protect, restore and rebalance our planet's largest Geographic Explorers, storytellers and educators conducted a comprehensive scientific examination in the Southern Ocean's Weddell Sea via a groundbreaking sea ice to seafloor transect over a 21-day field research expedition in December 2024. The multidisciplinary team of 18 scientists, with expertise in oceanography, marine ecology, climate science, geology, wildlife health and migration, and community-based conservation, documented vital marine processes in this critical yet understudied region. The scientist teams collected 750 samples of sediment cores, ice cores, algae, krill, sea floor organisms (e.g., tubeworms, sponges, etc.), wildlife swabs, and blood and tissue samples. Their observations will deepen our understanding of this ecosystem while informing conservation efforts essential to maintaining planetary health and ensuring a planet in Southern Ocean Expedition was conducted in collaboration with the Schmidt Ocean Institute which provided National Geographic Explorers the opportunity to leverage the state-of-the art tools and capabilities of its 110m global ocean-class R/V Falkor (too) during its maiden voyage to the Southern Ocean.