logo
Finding Yourselves in a Gloriously Stressful Sci-Fi Adventure

Finding Yourselves in a Gloriously Stressful Sci-Fi Adventure

New York Times25-06-2025
What are the events that made you who you are? Do you fixate on the contingencies, or the ostensible hand of fate that drove you to this particular place in space-time? How do you make sense of your regrets, your self-justifications, your burdens, your excuses?
The Alters is a game about a man physically confronted with such questions. To survive on a remote planet, he must learn to live with the other selves he might have been, radically different incarnations who share Jan Dolski's exact DNA but have their own personalities and talents.
After beginning in a cliché fashion, the latest effort by 11 Bit Studios, the Polish developer behind Frostpunk and This War of Mine, blossoms into an extraordinary survival game that explores miscommunication, human fallibility and conflicting motivations.
At the start, Jan finds himself the sole survivor of a space mining expedition on the behalf of Ally Corp. Soon after exiting his lifepod, he discovers a deposit of 'rapidium,' the most valuable substance in the universe yet one whose properties are scarcely understood. Then, upon returning to his ship, Jan learns he is in imminent danger: The radiance of a too-close star will soon char him into ash.
Heeding the instructions from a colleague on Earth, Jan also discovers the most personal information imaginable on the ship's quantum computer: a form of searchable memories that chart all the pivotal decisions that led him to enlist in Ally Corp's space mission.
Rushed for time but lacking the technical know-how to get his ship moving, Jan initiates a branching procedure on the computer that allows him to select an alternative life path. Using the rapidium, which is known to hasten organic growth, he births another self in the ship's medical wing, known as 'the womb.'
Want all of The Times? Subscribe.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Found: The Oldest Black Hole in the Universe
Found: The Oldest Black Hole in the Universe

Yahoo

time10 hours ago

  • Yahoo

Found: The Oldest Black Hole in the Universe

Scientists using the James Webb Space Telescope (JWST) have discovered the oldest known black hole in the universe. Nestled within a glowing red galaxy, it dates back 13 billion years and provides a rare glimpse into the universe's earliest moments. The black hole and the galaxy it belongs to are called CAPERS-LRD-z9. It is part of a series of galaxies known as the Little Red Dots. Compared to other galaxies, they are tiny, and they emit red light. Since 2022, scientists have been puzzled by the red spots. Observed in the distant realms of our universe, astronomers thought they were either a cluster of faraway stars or black holes at the center of different galaxies. The fact that they emit so much light suggested that they might be clusters of stars. However, they formed at such an early time that so many stars together was improbable. A new class of galaxy 'We started seeing these objects everywhere,' Anthony Taylor, co-author of the new study, told Science News. It is now generally accepted that the Little Red Dots are a new class of galaxy that formed in the early stages of the universe. The team decided to focus the JWST on one in particular, which seemed to be the oldest. This was CAPERS-LRD-z9. It emitted a huge range of infrared wavelengths. Using spectroscopy to split the light, the team studied the wavelength characteristics, looking for the fingerprint of a black hole. As fast-moving gas is sucked into black holes, it circles and creates a certain pattern of wavelengths of light. The gases moving toward us stretch into red wavelengths, while those moving away compress into blue wavelengths. 'There aren't many other things that create this signature. And this galaxy has it!' exclaimed Taylor in a statement. A blink of time A few even more distant spots could potentially be older black holes, but researchers have yet to see the same spectroscopic signature from them. This means that, at the moment, this is the oldest black hole ever discovered. At 13.3 billion years old, it formed just 500 million years after the Big Bang -- a blink of time in the scale of the universe. 'When looking for black holes, this is about as far back as you can practically go,' said Taylor. "We're really pushing the boundaries of what current technology can detect." Though the galaxies are quite small, the black hole at the center of CAPERS-LRD-z9 is not. It is about 300 million times the mass of our Sun, and roughly 10 times more massive than Sagittarius A*, the black hole at the center of the Milky Way. Even more intriguingly, its mass might represent around half of its galaxy's total stellar mass, a proportion far greater than in younger galaxies. Studying CAPERS-LRD-z9 doesn't just confirm the existence of a black hole. It gives astronomers a crucial testing ground to refine theories of early galaxy and black hole evolution. 'We only ever survey very tiny areas of the sky with the James Webb Space Telescope,' said co-author Steven Finkelstein, 'So, if we find one thing, there's got to be a lot more out there.' Solve the daily Crossword

James Webb Finds Evidence of Free-Floating Planets So Large They Can Gather Their Own Planetary Systems
James Webb Finds Evidence of Free-Floating Planets So Large They Can Gather Their Own Planetary Systems

Yahoo

time11 hours ago

  • Yahoo

James Webb Finds Evidence of Free-Floating Planets So Large They Can Gather Their Own Planetary Systems

So much for heliocentrism. An international team of astronomers using observations made with the James Webb Space Telescope have found evidence of massive planets out there that're capable of forming their own planetary systems — without a star. These planets would be the center of something like a mini version of our solar system where other, smaller planets revolve around it. But without the light of a star, these systems, if they exist, would go largely overlooked by our telescopes, lost to the dark void of space. The work, a new study accepted for publication in the The Astronomical Journal, focuses on free-floating "rogue" planets which are not gravitationally bound to a star. While some rogue planets are first formed around a stellar object before being ejected from their system, the astronomers believe these ones may have formed from the same mechanism that gives birth to stars. "These discoveries show that the building blocks for forming planets can be found even around objects that are barely larger than Jupiter and drifting alone in space," lead author Belinda Damian, an astronomer at the University of St Andrews in Scotland, said in a statement about the work. "This means that the formation of planetary systems is not exclusive to stars but might also work around lonely starless worlds." Using James Webb observations taken between August and October 2024, the astronomers examined eight free-floating planets. With masses between five to ten times that of Jupiter, these belong to a class of objects believed to be the lowest mass objects that form from the collapse of the giant gas clouds that are sometimes referred to as stellar nurseries, as they're typically associated with star formation. For one reason or another, these objects didn't accumulate enough mass to sustain nuclear fusion reactions in their cores and become proper stars. These shouldn't be confused with brown dwarfs, however, which are much more massive substellar objects that are dozens of times heavier than Jupiter that also fail to kickstart nuclear fusion, earning them the moniker of "failed" stars. In this latest work, the astronomers detected excess emissions in the infrared spectra of these objects, showing that six of them have emissions associated with warm dust. This indicates the presence of a disk, or a circumstellar cloud of gas and dust that surrounds the planet. In itself, this isn't unusual, and such disks have been detected around rogue planets before. Around stars, these disks, referred to as protoplanetary disks, are where dense regions of gas and dust can coalesce to form planets, and are the leftover material from the star's formation which didn't get sucked into its collapsing core. But the kicker here is that the scientists have detected signs that the rogue planets' disks are already exhibiting the crucial first steps of planetary formation in the form of harboring silicate grains, which appear to be growing and crystallizing. These dusty grains can clump together to form planetesimals, the large, solid objects that are the building blocks of a baby planet. This is the first detection of silicate grains around a planetary mass object, the authors said. And it pairs tantalizingly with their previous study which showed that the rogue planet disks can last for millions of years, providing more than enough time to incubate inchoate worlds. "Taken together, these studies show that objects with masses comparable to those of giant planets have the potential to form their own miniature planetary systems," coauthor Aleks Scholz, who is also a St Andrews astronomer, said in the statement. "Those systems could be like the solar system, just scaled down by a factor of 100 or more in mass and size. Whether or not such systems actually exist remains to be shown." Ironically, then, maybe our ancestors weren't totally off the mark with their whole geocentrism fixation — they just had the wrong planetary system in mind. More on exoplanets: James Webb Spots Planets Forming Into Solar System in Real Time, Like an Organism's First Cells Solve the daily Crossword

Fuel Fill-Ups in Space? Musk and Bezos Are Working on It
Fuel Fill-Ups in Space? Musk and Bezos Are Working on It

Wall Street Journal

time14 hours ago

  • Wall Street Journal

Fuel Fill-Ups in Space? Musk and Bezos Are Working on It

Elon Musk and Jeff Bezos are trying to figure out how to pump gas in space. The billionaire space rivals are working on ambitious missions to the moon or Mars, and a crucial design element for each venture is using spacecraft that take on additional fuel while orbiting Earth. Vehicles that could grab propellants in orbit would be less weighed down at liftoff, letting planners design missions to travel farther from Earth with more cargo, scientific gear or crew members, advocates say.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store