Ancient footprints from Australia reveal earliest-known reptile
By Will Dunham
(Reuters) -Seventeen footprints preserved in a slab of sandstone discovered in southeastern Australia dating to about 355 million years ago are rewriting the history of the evolution of land vertebrates, showing that reptiles arose much earlier than previously known.
The fossilized footprints, apparently made on a muddy ancient river bank, include two trackways plus one isolated print, all displaying hallmark features of reptile tracks including overall shape, toe length and associated claw marks, researchers said. They appear to have been left by a reptile with body dimensions similar to those of a lizard, they said.
The footprints reveal that reptiles existed about 35 million years earlier than previously known, showing that the evolution of land vertebrates occurred more rapidly than had been thought.
"So this is all quite radical stuff," said paleontologist Per Ahlberg of the University of Uppsala in Sweden, who led the study published on Wednesday in the journal Nature.
The Australian footprints were preserved in a sandstone slab measuring about 14 inches (35 cm) across that was found on the banks of the Broken River near the town of Barjarg in the state of Victoria.
The story of land vertebrates started with fish leaving the water, a milestone in the evolution of life on Earth. These animals were the first tetrapods - meaning "four feet" - and they were the forerunners of today's terrestrial vertebrates: amphibians, reptiles, mammals and birds. Footprints in Poland dating to about 390 million years ago represent the oldest fossil evidence for these first tetrapods, which lived an amphibious lifestyle.
These creatures were the ancestors of all later land vertebrates. Their descendants split into two major lineages - one leading to today's amphibians and the other to the amniotes, a group spanning reptiles, mammals and birds. The amniotes, the first vertebrates to lay eggs on land and thus finally break free of the water, cleaved into two lineages, one leading to reptiles and the other to mammals. Birds evolved much later from reptile ancestors.
The Australian footprints each are approximately 1-1.5 inches (3-4 cm) long. They appear to have been left by three individuals of the same reptile species, with no tail drag or body drag marks. No skeletal remains were found but the footprints offer some idea of what the reptile that made them looked like.
"The feet are rather lizard-like in shape, and the distance between hip and shoulder appears to have been about 17 cm (6.7 inches). Of course we don't know anything about the shape of the head, the length of the neck or the length of the tail, but if we imagine lizard-like proportions the total length could have been in the region of 60 cm to 80 cm (24 to 32 inches)," Ahlberg said.
"In terms of its overall appearance, 'lizard-like' is probably the best guess, because lizards are the group of living reptiles that have retained the closest approximation to the ancestral body form," Ahlberg added.
The modest size of the earliest reptiles stands in contrast to some of their later descendants like the dinosaurs.
This reptile probably was a predator because plant-eating did not appear until later in reptilian evolution. The bodies of herbivorous reptiles tend to be big and clunky, whereas this one evidently was lithe with long, slender toes, Ahlberg said.
The researchers also described newly identified fossilized reptile footprints from Poland dating to 327 million years ago that broadly resemble those from Australia. Those also are older than the previous earliest-known evidence for reptiles - skeletal fossils from Canada of a lizard-like creature named Hylonomus dating to around 320 million years ago, as well as fossil footprints from about the same time.
The reptile that left the Australian footprints lived during the Carboniferous Period, a time when global temperatures were similar to today's, with ice at Earth's poles but a warm equatorial region. Australia at the time formed part of the ancient supercontinent Gondwana and lay at the southern edge of the tropics. There were forests, partly composed of giant clubmoss trees.
"The tracks were left near the water's edge of what was probably quite a large river, inhabited by a diversity of big fishes," Ahlberg said.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
a day ago
- Yahoo
There's an Invisible Line That Animals Don't Cross. Here's Why.
The animal kingdoms of Asia and Australia are worlds apart, thanks to an invisible line that runs right between the two neighboring continents. Most wildlife never cross this imaginary boundary, not even birds. And so it has been for tens of millions of years, shaping animal evolution in different ways on each side. It all started about 30 million years ago, when the Australian tectonic plate bashed up against the Eurasian tectonic plate and created an archipelago, rerouting ocean currents and creating new regional climates. On one side of the map, in Indonesia and Malaysia, monkeys, apes, elephants, tigers, and rhinos evolved; while on the other side, in New Guinea and Australia, marsupials, monotremes, rodents, and cockatoos flourish. Very few species are abundant on both sides. The curious faunal divide is named Wallace's Line – after the naturalist Alfred Russel Wallace, who first noticed the stark difference in animal life (mostly mammals) while exploring the region in the mid-19th century. "We may consider it established that the Strait of Lombok [between Bali and Lombok] only 15 miles wide [24 kilometers] marks the limit and abruptly separates two of the great zoological regions of the globe," Wallace wrote. The naturalist later went on to independently develop a theory of evolution around the same time as Charles Darwin. The line he drew on a map more than a century ago is still considered a hypothetical evolutionary barrier, although debates continue as to its exact location and mechanisms. Generally speaking, Wallace's line separates a shelf of the Asian continent from a shelf of the Australian tectonic plate. It is a geological line, but it is also a climatic and biological one. Deep ocean channels like the Lombok Strait separate each shelf, which makes it difficult for animals to cross. Even when sea levels in the distant past were much lower than today, this chasm would have still existed. While Wallace's invisible line is most obvious when comparing mammals in Asia and Australia, it also exists for birds, reptiles, and other animals. Even creatures with wings don't typically make the trip across Wallace's line, and in the ocean, some types of fish and microbes show genetic differences on one side of the border compared to the other, indicating very little mixing between populations. Scientists have yet to figure out what invisible barriers are holding these species back. Habitat and climate, however, are probably factors accentuating the evolutionary divide. In 2023, an analysis of more than 20,000 vertebrate species found that Southeast Asian lineages evolved in a relatively tropical ancient environment that allowed them to spread out toward New Guinea on humid island "stepping stones". Wildlife on the Australian continental shelf, meanwhile, evolved in distinctly drier conditions, which dictated a different evolutionary path. This meant that Australian wildlife was at a disadvantage in the tropical islands nearer the equator. The more researchers study the Wallace line, however, the less clear it becomes about where the line should be drawn and how 'porous' the barrier might be – at least to some animals that can swim, float, or fly, like bats, beetles, monitor lizards, or macaques. Wallace's divide isn't an absolute border, but more of a gradient, scientists say. Even still, the blurry line helps us make sense of animal evolution for thousands of species. "Darwin's and Wallace's mental and actual maps were the table on which the evolutionary scheme was played out, comparable in importance to the geological time scale," argued science historian Jane Camerini in 1993 for the History of Science Society. What started as a single, roughly placed line, drawn more than a century ago, has now helped shape a bigger and more complicated picture of the natural world and its mysteries. Dehorning Rhinos Cuts Poaching by 78% – Saving Thousands of Animals' Lives Worms Use Their Bodies to Build Towers as a Wild Survival Strategy Elusive LSD Fungus Finally Discovered on Flower


Forbes
2 days ago
- Forbes
Why The ‘Strawberry Moon' Will Be Lowest Until 2043 — And How To Photograph It
Tuesday's full strawberry moon occurs during two-year period known as the 'major lunar standstill" ... More or "lunistice," when a once-in 18.6-year event will create the lowest-hanging full moon since 2006 and until 2043. The full moon is seen here rising behind Stonehenge in England. (Photo by) The full strawberry moon will put on a dramatic show at moonrise on Tuesday, June 10 — low, luminous, and colored orange as it climbs into the southeastern sky. Get to an observing location that looks southeast — preferably low to the horizon — and at the specific time of moonrise where you are (during dusk), you'll see the red-orange orb rise before your eyes. Seen from the Northern Hemisphere, the full moon will rise far to the southeast, move across the sky close to the southern horizon, and set in the southwest close to dawn. It's happening because we're in the midst of a rare two-year period known as the 'major lunar standstill" or "lunistice," when a once-in 18.6-year event will create the lowest-hanging full moon since 2006 and until 2043. Earth's axis is tilted by 23.5 degrees with respect to the ecliptic, the path of the sun through the daytime sky, and, in effect, the plane of the solar system. That's what gives us seasons, and that's why planets are always found close to the ecliptic (hence the misused "planetary alignment" claims despite planets always being somewhat aligned with each other). The moon's orbit crosses the ecliptic twice each month, and when those crossings align with a new or full moon, eclipses can occur — hence the shared root in the words 'ecliptic' and 'eclipse.' While the sun's rise and set points vary throughout the year, changing by 47 degrees — and reaching the extreme points at the solstices — the moon's range is bigger, with that 5-degree tilt giving its rise and set points a 70-degree range near a major standstill, according to Griffith Observatory. Mount Coot-tha Lookout, Brisbane A major lunar standstill is a period when the northernmost and southernmost moonrise and moonset are furthest apart. Unlike a solstice (Latin for "sun stand still"), which lasts for one day, a major lunar standstill lasts for two years. These events are most noticeable during a full moon. Essentially, the swiveling and shifting orbit of the moon — a consequence of the sun's gravitational pull — is tilted at its maximum angle relative to the ecliptic. Every 18.6 years, the tilts combine to cause the moon to rise and set as much as 28.5° north or south of due east and west, respectively. Most people won't notice the major lunar standstill, but if you regularly watch the full moon rise from a particular place, go there — you'll get a shock when the moon rises at an extreme position much farther from where you might imagine it will rise. Imaging a full moon using a smartphone isn't easy, but it is possible to capture something special. First, switch off your flash and turn on HDR mode (if available) to better capture both the moon and the landscape as the light fades during dusk. Don't zoom in because digital zoom only blurs the details. Instead, frame the moon within a landscape for more impact, which is especially effective during this month's unusually far-southeast moonrise. If you use a manual photography app, stick to an ISO of 100 for a clean shot and experiment with slower (but not too slow) shutter speeds. A tripod will help, especially when using slow shutter speeds. However, if you don't have one, you can balance your phone on a wall or ledge. The key is to image it when it's low on the horizon and glowing orange. You've got a short window to capture that color, even with this low-hanging full moon, which will turn bright white as it lifts above the horizon. Wishing you clear skies and wide eyes.
Yahoo
2 days ago
- Yahoo
Resilience, a Private Japanese Spacecraft, Crash-Landed on the Moon
A Japanese spacecraft has probably crashed on the Moon, the second failed landing attempt for Tokyo-based private firm ispace. The HAKUTO-R Mission 2 (M2) lander — also called Resilience — began its landing sequence from a 100-kilometre-altitude orbit at 3.13am local time on 5 June. The craft was due to land near the centre of Mare Frigoris (Sea of Cold) at 4.17am. The ispace team said at a press conference that it lost contact with M2 when the craft was 192 metres above the Moon's surface and descending faster than expected. An attempt to reboot M2 was also unsuccessful. [Sign up for Today in Science, a free daily newsletter] M2 didn't receive measurements of the distance between itself and the lunar surface in time to slow down and reach its correct landing speed, the team said. 'It eventually slowed down, but not softly enough,' says Clive Neal, who studies the Moon at the University of Notre Dame in Indianapolis, US. He speculates that the failure was probably caused by a systems issue that wasn't identified and addressed during the M1 landing attempt. 'It's something that I believe will definitely be fixable, because getting that close means there's a few tweaks that are going to be needed for the next one,' he adds. If M2 had successfully landed on the lunar surface, the mission would have been the second time a commercial company had achieved the feat and a first for a non-US company. ispace's Mission 1 (M1) probably crashed during a landing attempt in April 2023. Lunar landings are challenging. When M1 crashed, Ryo Ujiie, ispace's chief technology officer said the telemetry — which collects data on the craft's altitude and speed — estimated that M1 was on the surface when it wasn't, causing the lander to free fall. Speaking to Nature last week, Ujiie said the company had addressed the telemetry issue with M2 and modified its software. 'We also carefully selected how to approach the landing site,' he added. Had M2 landed successfully, the craft would have supplied electricity for its cargo, including water electrolyzing equipment and a module for food production experiments — developed by Japan-based Takasago Thermal Engineering and biotechnology firm Euglena. A deep space radiation probe made by Taiwan's National Central University, and the 54-centimetre Tenacious rover were also be on board. The rover, created by ispace's European subsidiary in Luxemburg, was going to be released from the lander to collect imagery, location data and lunar sand known as regolith. Tenacious also carries a small red house made by Swedish artist Mikael Genberg. The craft launched on 15 January from Cape Canaveral, Florida, onboard a SpaceX Falcon 9 rocket. The rocket was also carrying the Blue Ghost Moon lander — developed by Firefly Aerospace, an aerospace firm based in Texas — which landed on the Moon on 2 March. M2 took a longer path to the moon than Blue Ghost, performing a lunar flyby on 15 February and spending two months in a low-energy transfer orbit before entering lunar orbit on 7 May. Ujiie says the path was slower because it was a low-energy trajectory, meaning that less fuel was used to move between Earth and lunar orbit. Richard de Grijs, an astronomer at Macquarie University in Sydney, Australia, says there will likely be more private companies trying to land their own crafts on the Moon. 'It seems that the big government players like NASA are quite keen to partner with commercial companies,' he says, because they can develop and launch crafts more cheaply than government bodies. He also expects that more missions will be launched in clusters, like the launch of M2 and Blue Ghost. This article is reproduced with permission and was first published on June 6, 2025.