A Mysterious World Has Been Discovered Lurking in Our Solar System—Meet 'Ammonite'
Ammonite, or its scientific name 2023 KQ14, is known as a sednoid, which is a type of cosmic body circling the sun beyond Neptune with a highly eccentric orbit. It's only the fourth sednoid ever discovered. It comes as close as 66 astronomical units (AU) from the sun and as far away as 252 AU. One astronomical unit is equal to the average distance between Earth and the sun, or about 93 million miles.
Ammonite was discovered by the survey project "FOSSIL" (Formation of the Outer Solar System: An Icy Legacy), which is led by researchers from Japan and Taiwan who explore the outer solar system to learn about its past. The research team used the powerful Subaru Telescope, located at the Mauna Kea Observatory in Hawaii. The telescope has wide-field imaging capabilities that are uniquely suited for scanning large patches of the sky for faint, slow-moving objects like Ammonite.
Computer simulations show that Ammonite's orbit has remained stable for billions of years, unaffected by gravitational interactions with other solar system objects. This long-term stability makes Ammonite one of the best-preserved "fossils" of our solar system's distant past, suggesting that it originates from the solar system's early formation and retains a fossil record of the orbital configuration.
Ying-Tung Chen, one of the authors of the study and a support scientist at the Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), in Taiwan, said in a statement that while previously known sednoid objects all share roughly similar orbital orientations, Ammonite's orbit is oriented in the opposite direction, suggesting that the outer solar system is more diverse and complex than previously thought.
What caused this clustering of objects is still unclear, with scientists hypothesizing about the possibility of a passing star or an ejected planet.
"The significance of discovering Ammonite goes far beyond adding one more distant object," Shiang-Yu Wang, one of the study's authors and a research fellow at ASIAA, said in a statement. "Ammonite's orbit tells us that something sculpted the outer solar system very early on. Whether it was a passing star or a hidden planet, this discovery brings us closer to the truth."
Read the original article on Martha Stewart
Solve the daily Crossword
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
an hour ago
- Yahoo
Spiders may have evolved in the ocean before adapting to land, fossil reveals
One of the creepiest, crawliest creatures of the Earth may have been swimming before adapting to live on land, new research suggests. Spiders and their arachnid relatives may have actually originated in the sea, according to analysis of an "exquisitely preserved" fossil that lived 500 million years ago. The findings were published Tuesday in the journal Current Biology. MORE: 99-million-year-old 'zombie' fungi found preserved in amber, scientists say Researchers at the University of Arizona completed a detailed analysis of the brain and central nervous system of an extinct animal called Mollisonia symmetrica, according to the study. The species was previously thought to represent an ancestral member of a specific group of arthropods called chelicerates that lived during the Cambrian period -- between 540 and 485 million years ago. Chelicerates were believed to be ancestors to modern-day horseshoe crabs. However, the scientists were surprised to discover that the neural arrangements in Mollisonia's fossilized brain are not organized like those in horseshoe crabs. Instead, they are organized the same way as in modern spiders and their relatives, the researchers said. The anterior part of Mollisonia's body -- the prosoma -- contains a radiating pattern of segmental ganglia that control the movements of five pairs of segmental appendages, the researchers said. In addition, an unsegmented brain extends short nerves to a pair of pincer-like "claws," similar to the fangs of spiders and other arachnids. The decisive feature that demonstrates the fossil was likely an early arachnid is the unique organization of the brain -- a reverse of the front-to-back arrangement found in present-day crustaceans, insects, centipedes and horseshoe crabs, the researchers said. MORE: Fossils from giant possum-like mammal that lived 60 million years ago found in Texas It's as if the brain has been "flipped backwards," which is what is seen in modern spiders," said Nick Strausfeld, a regents professor at the University of Arizona and lead author of the paper, in a statement. This may be a crucial evolutionary development, as studies of existing spider brains suggest that a back-to-front arrangement in the brain provides shortcuts from neuronal control centers to underlying circuits, which control the spider's movements, said Frank Hirth, a reader of evolutionary neuroscience at King's College London and co-author of the paper. The arrangement likely helps the spiders hunt stealthily and dexterity for the spinning of webs. The arachnid brain is "unlike any other brain" on Earth, Strausfeld said. "This is a major step in evolution, which appears to be exclusive to arachnids," Hirth said. MORE: Fossils found in North America reveal new species of 'very odd' sea monster: Scientists Spiders and scorpions have existed for about 400 million years with little change -- dominating the Earth as the most successful group of arthropodan predators. The finding challenges the widely held belief that diversification occurred only after a common ancestor had moved to the shore, according to the study. Previous fossil records appeared to indicate that arachnids lived and diversified exclusively on land. "It is still vigorously debated where and when arachnids first appeared, and what kind of chelicerates were their ancestors, and whether these were marine or semi-aquatic like horseshoe crabs," Strausfeld said. While the Mollisonia outwardly resembles some other early chelicerates from the time period, its body was composed of two parts: a rounded "carapace" in the front and a sturdy segmented trunk ending in a tail-like structure, the analysis found. Some researchers had previously compared its body composition to that of scorpions, but no one had previously claimed that it was anything "more exotic" than a chelicerate. The first creatures to come onto land were likely millipede-like anthropods and other ancestral, insect-like creatures -- an evolutionary branch of crustaceans, Strausfeld said. MORE: What paleontologists learned from fossils of a 3-eyed predator that lived 500 million years ago Early insects and millipedes were likely part of the Mollisonia-like arachnid's daily diet when they adapted to land, he added. The first arachnids on land may have also contributed to the evolution of insect wings, a "critical defense mechanism," Strausfeld said. The Mollisonia's lineage likely gave rise to spiders, scorpions, sun spiders, vinegarroons and whip scorpions, the researchers said.


Washington Post
an hour ago
- Washington Post
Fossilized penis worm suggests Grand Canyon was an evolutionary hotbed
Roughly a half-billion years ago, a minuscule penis worm armed with a retractable spiky mouth crawled around prehistoric Arizona. After eons fossilized inside a rock, the newly identified species was unveiled in a study Wednesday, and the worm's sophisticated eating apparatus shows that the Grand Canyon was once an evolutionary 'Goldilocks zone,' its authors say, where conditions were so abundant that animals like this one could afford to take risks as they evolved.


New York Times
4 hours ago
- New York Times
Something Like Feathers Grew on a 247-Million-Year-Old Reptile
German paleontologists have discovered a 247-million-year-old fossil of a reptile with a bizarre row of plumes sprouting from its back. The elaborate display is a paradox of evolution. The plumes bear some similarities to feathers, even though the newly discovered reptile was not closely related to birds. Stephan Spiekman, a paleontologist at the Stuttgart State Museum of Natural History in Germany and an author of the new study, said that the discovery could change how scientists think about the origin of feathers. In birds, a complex network of genes is enlisted to sprout feathers from their skin. Part of the network might have already evolved in early reptiles more than 300 million years ago. If that's true, Dr. Spiekman said, it would mean that other ancient reptiles might have sprouted strange ornaments of their own that are waiting to be discovered. 'I hope this will broaden our perspective,' Dr. Spiekman said. 'And then who knows what we'll find?' In their study, which was published on Wednesday in the journal Nature, Dr. Spiekman and his colleagues named the reptile Mirasaura grauvogeli. In Latin, Mirasaura means 'wonderful reptile.' And grauvogeli honors Louis Grauvogel, the French paleontologist who dug up the fossil in 1939. Grauvogel was a wealthy factory owner with training in biology. He spent much of his free time looking for fossils in the quarries of northeastern France, and by the time he died in 1987, he had built up a huge private collection of animal and plant remains. His daughter, Lea Grauvogel-Stamm, herself an accomplished paleontologist, donated the fossils to the Stuttgart Museum in 2019. Want all of The Times? Subscribe.