logo
Made in India, Feared Worldwide: The Tejas-Astra Combo That's Changing Air Combat Forever

Made in India, Feared Worldwide: The Tejas-Astra Combo That's Changing Air Combat Forever

India.com18-07-2025
Made in India, Feared Worldwide: The Tejas-Astra Combo That's Changing Air Combat Forever
Hindustan Aeronautics Limited (HAL) is preparing for the inaugural live firing test of the Astra Mk1 Beyond Visual Range Air-to-Air Missile (BVRAAM) from the Tejas Mk1A platform, slated for early August 2025.
By Girish Linganna Edited by Joy Pillai
Advertisement
Made in India, Feared Worldwide: The Tejas-Astra Combo That's Changing Air Combat Forever
Bottom Line Up Front: India is about to achieve a major milestone in August 2025 with the first live-fire test of the indigenous Astra Mk1 missile from the advanced Tejas Mk1A fighter jet, marking a crucial step toward complete self-reliance in air combat capabilities and strengthening India's defense posture against any future conflicts as reported by Defence.in
The Historic Moment Approaching
Advertisement ===
Hindustan Aeronautics Limited (HAL) is preparing for the inaugural live firing test of the Astra Mk1 Beyond Visual Range Air-to-Air Missile (BVRAAM) from the Tejas Mk1A platform, slated for early August 2025. HAL Chairman and Managing Director DK Sunil announced the forthcoming trial, marking a crucial advancement in India's pursuit to bolster its homegrown air combat technology. This represents more than just a weapons test—it's a declaration of India's technological independence in aerospace defense.
The importance of this test cannot be overstated. The Astra Mk1 missile, developed by the Defence Research and Development Organisation (DRDO), has already been successfully tested on earlier Tejas Mk1 variants using the ELTA ELM-2032 Multi-Mode Fire Control Radar. The Tejas Mk1A, however, introduces substantial upgrades, including the ELM-2052 Active Electronically Scanned Array (AESA) radar and a new Digital Flight Control Computer (DFCC), both of which require fresh integration trials with existing weapons systems.
Advertisement ===
Understanding the Astra Missile Family: From Mk1 to the Future
Astra Mk1: The Foundation Stone
Astra Mk-1 is 3.6 m (12 ft) long with a diameter of 178 mm (7.0 in) and weighs 154 kg (340 lb). It uses mid-course inertial guidance driven by fibre-optic gyroscope with terminal guidance through active radar homing. It is capable of receiving course corrections through a secure data link.
Think of the Astra Mk1 as India's answer to modern air combat needs. The missile's active radar seeker, with a homing range of 25 km (16 mi), was designed by Russia's Concern Morinformsystem-Agat but manufactured within India. The seeker can lock-on to a target with a radar cross section of 5 square metres from a distance of 15 km and enables off-boresight launches up to an angle of 45°.
The missile's capabilities are impressive: The maximum range of Astra is 110 km in head-on chase and 20 km in tail chase. The missile could be launched from different altitudes – it can cover 110 km when launched from an altitude of 15 km, 44 km when fired from an altitude of eight km and 21 km when the altitude is sea-level.
Astra Mk2: The Game Changer
The Astra Mk2 represents a significant leap forward. Unlike the single-pulse rocket motor of the Astra Mk-1, the Astra Mk-2 uses a dual-pulse rocket motor, which dramatically increases its range and kill probability.
Here's how this technology works in simple terms: The single-pulse rocket motor in the Astra Mk-1 burns its entire solid propellant in one go during the launch phase, imparting high kinetic energy and velocity to the missile, to the tune of 4.5 Mach or above. After the propellant burns out, the missile coasts down without any power, relying simply on gravity and kinetic energy. The farther away the target, the more the A2A missile slows down due to air drag. This limits the end-game kinematics of the missile — essentially the maneuvering capability of the missile when it reaches close to its target. This is precisely what the dual-pulse rocket motor aims to address. In the endgame, the second pulse of the dual-pulse motor fires, giving additional velocity and kinetic energy to the missile, providing either additional range or better end-game kinematics for a higher probability of kill.
With a projected range of 140–160 km, the Astra MkII incorporates cutting-edge technologies, including a dual-pulse rocket motor, upgraded guidance algorithms, and an indigenous radio frequency (RF) seeker. The missile is slated to achieve operational readiness by 2026.
Astra Mk3: The Future Vision
India and Russia are working together to build a future Mk-3 model powered by a solid fuel ducted ramjet (SFDR) engine. Range: Astra Mk-1: 110 km (68 mi) / Astra Mk-2: 160 km (99 mi) / Astra Mk-3: 350 km (220 mi). This would put the Astra Mk3 in the same league as the world's most advanced air-to-air missiles.
Radar Technology: The Eyes of Modern Fighters
ELM-2052 AESA Radar: Current Technology
The Tejas Mk1A currently uses the Israeli ELM-2052 AESA radar, which represents cutting-edge technology. The FCR is based on fully solid-state active phased array technology. The radar has multi-target tracking capabilities, able to track up to 64 targets simultaneously. The EL/M-2052 radar incorporates operational feedback from Israeli Air Force combat pilots.
Understanding AESA Technology
To understand why AESA radars are revolutionary, imagine the difference between a flashlight and a disco ball with hundreds of individual lights. Traditional radars are like flashlights—they send out one beam that physically moves to scan the sky. AESA radars are like having hundreds of tiny radar transmitters working together, allowing them to:
– Track multiple targets simultaneously
– Switch between different modes instantly
– Resist enemy jamming better
– Detect targets at longer ranges
– Operate with lower probability of being detected
Uttam AESA Radar: India's Indigenous Pride
Uttam (lit. 'Excellent') is a solid-state gallium arsenide (GaAs) based AESA radar under development by the Electronics and Radar Development Establishment (LRDE), a laboratory of the Indian Defence Research and Development Organisation (DRDO). It is a low probability of intercept radar. It is a liquid cooled AESA radar featuring quad band modules that can be stacked to form a larger unit. The Uttam Mk-1 has a total of 912 TRMs.
The indigenous Uttam radar offers impressive capabilities: The radar is capable of tracking 100 targets simultaneously and engage 6 of them by SARH/ARH missiles in high priority tracking mode. For comparison, Elta EL/M-2052 is capable of tracking 64 targets in TWS mode.
Dr. Samir V. Kamat, Chairman of Defence Research & Development and Chairman of the Defence Research and Development Organisation (DRDO), refuted reports claiming that all 73 Tejas Mk1A fighter jets would be equipped with Israeli ELM-2052 AESA radars. Clarifying the status of radar integration in India's Light Combat Aircraft (LCA) program, Dr. Kamat stated, 'No, I don't think it's true. Discussions are still underway, and the plan is to integrate the Uttam AESA radar starting from the 41st Tejas Mk1A jet.'
How This Technology Helps in Operation Sindoor-Type Scenarios
The recent Operation Sindoor in May 2025 demonstrates exactly why indigenous capabilities matter. That pattern of inaction began to change in 2016, when in response to an attack at Uri, Indian special forces raided terrorist camps just across the Line of Control. At the next crisis, India's response was notably more aggressive. In 2019, in response to an attack at Pulwama, India launched an air strike targeting a terrorist site at Balakot. As I wrote in these pages, the Balakot air strike sought to deter Pakistan by crossing multiple new thresholds — India used airpower against Pakistan for the first time since 1971, and reached into undisputed Pakistani territory beyond Kashmir — and by deliberately generating risk to intimidate Pakistan.
On 7 May 2025, India announced that it had launched missile and air strikes, codenamed Operation Sindoor, targeting nine sites across Pakistani-administered Azad Kashmir and Pakistan's Punjab province. According to sources cited by India Today, Rafale jets were employed, equipped with SCALP missiles and AASM Hammer bombs.
The integration of Tejas Mk1A with Astra missiles provides several advantages in such scenarios:
Stand-Off Capability: With a range surpassing 100 kilometers and sophisticated guidance systems, the Astra Mk1 is engineered to accurately neutralize aerial threats, even in environments with electronic interference. Its successful integration with the Tejas Mk1A will significantly augment the aircraft's air superiority, particularly in deployments at frontline airbases.
Indigenous Advantage: Unlike imported weapons systems that may face restrictions during conflicts, indigenous systems can be deployed without external limitations. India carried out accurate strikes on fortified positions across the border using only domestically developed or assembled systems such as BrahMos missiles, Akashteer air defense units, and loitering munitions, without relying on U.S. platforms or foreign logistics.
Quick Response: Forward airbases equipped with Tejas Mk1A fighters can respond rapidly to emerging threats without waiting for clearances or spare parts from foreign suppliers.
Production Challenges and the Need for Speed
The article rightly points out that Despite facing prior delays related to engine deliveries and radar integration, HAL is on course to deliver 12 Tejas Mk1A aircraft in 2025, with the inaugural aircraft expected to leave HAL's Nashik production line by the end of July.
However, the production rate needs acceleration. The suggestion to involve private sector companies more extensively makes strategic sense. Currently, private companies manufacture components that HAL then assembles. A more distributed manufacturing approach where multiple companies can produce complete aircraft would:
– Increase production rate significantly
– Create redundancy in manufacturing capability
– Reduce dependency on single production lines
– Enable faster technology transfer and innovation
The Strategic Importance of Self-Reliance
The Astra program supports the IAF's goal of reducing reliance on foreign-sourced weaponry while enhancing autonomous strike capabilities. This is not just about saving foreign exchange—it's about strategic autonomy.
When conflicts arise, countries with indigenous capabilities can:
– Continue operations without external supply chain dependencies
– Modify systems quickly based on battlefield requirements
– Scale up production rapidly during extended conflicts
– Avoid potential technology sanctions or restrictions
Future Integration: Uttam Radar and Astra Mk2
The recommendation to start testing Astra Mk2 with Uttam radar on Tejas Mk1A before the 41st aircraft is strategically sound. The dual-pulse motor allows the missile to conserve energy during its mid-course flight and unleash a second burst of propulsion during the final approach, significantly increasing its no-escape zone (NEZ)—the range within which a target cannot evade the missile.
This combination would provide:
– Extended engagement range (140-160 km for Mk2 vs 110 km for Mk1)
– Better tracking capability (100 targets for Uttam vs 64 for ELM-2052)
– Complete indigenous system integration
– Cost advantages (Rs 7-8 crore per Astra unit vs Rs 25 crore for imported alternatives)
HAL's Critical Role in National Defense
HAL's success in this program demonstrates India's growing aerospace capabilities. HAL has confirmed orders for 83 Mk1As and anticipates orders for an additional 97 examples. This represents not just aircraft production but the development of an entire aerospace ecosystem.
The successful integration of Astra missiles with Tejas fighters proves that Indian organizations can develop world-class military technology. The successful test represents another step in the weapon's integration with the Tejas fighter platform. ASTRA is set to become a key part of the standard armament for both Tejas and the Su-30MKI fighter aircraft.
Looking Ahead: Building Squadron Strength
The criticism about deployment timeline is valid. India needs its first Tejas Mk1A squadron operational at the earliest. This requires:
**Parallel Development:** Testing Astra Mk2 and Uttam radar integration should proceed simultaneously with Mk1 deliveries, not sequentially.
**Rapid Scaling:** The suggestion for licensed production by multiple companies could dramatically increase production rates.
**Forward Deployment:** One of the IAF's key expectations is that the Tejas Mk1A, once certified, will be deployable at forward airbases along India's borders, particularly in the western and northern sectors facing Pakistan and China. These bases, often located in challenging terrains and closer to potential flashpoints, require aircraft with robust performance, quick response times, and advanced weaponry.
Conclusion: A New Chapter in Indian Aerospace
The upcoming Astra Mk1 test from Tejas Mk1A in August 2025 represents more than a technological milestone—it symbolizes India's journey toward complete self-reliance in critical defense technologies. These developments affirm India's commitment to strengthening its domestic defense industry and enhancing its air combat readiness.
As recent conflicts have shown, indigenous capabilities provide strategic advantages that cannot be matched by imported systems. The combination of Tejas fighters, Astra missiles, and Uttam radars creates a formidable indigenous air defense capability that can respond to threats without external dependencies.
The path forward requires accelerated production, expanded private sector involvement, and continued investment in research and development. With HAL leading this charge and DRDO providing cutting-edge technology, India is well-positioned to achieve complete aerospace self-reliance within this decade.
The sky is no longer the limit—it's India's domain to protect with indigenous excellence.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

INR 50L-1Cr Homes Dominate from 2022-2024, Decision Cycles Rising
INR 50L-1Cr Homes Dominate from 2022-2024, Decision Cycles Rising

Fashion Value Chain

timea few seconds ago

  • Fashion Value Chain

INR 50L-1Cr Homes Dominate from 2022-2024, Decision Cycles Rising

Largest share of buyers in INR 50 lakh-1 Cr budget range – ~28% in 2022, ~32% in 2023, ~35% in 2024 Share of buyers in up to INR 25 lakh range declines from ~16% in 2022 to 14% in 2024, share of buyers in INR 1-2 Cr segment rising – 14% in 2022, 16% in 2023, 17% in 2024 Avg. days from inquiry to booking rising – 25 days in 2022, 27 days in 2023, 28 days in 2024 Dominant buyer age group is consistently 31-35; youngest (<25) & oldest (>45) have smallest shares of buyer pool Buying sources – digital sources down from ~35% (2022) to ~30% (2024); channel partner sources rise from ~28% (2022) to ~32% (2024); offline channels rise from ~25% (2022) to ~28% (2024). Referral channels hover at ~12% The application of artificial intelligence (AI) to real estate customer profiling has fundamentally transformed how leading property brokerages leverage technology to understand and serve their customers. ANAROCK has analysed some of its customer intelligence data from 2020 to 2024 to reveal significant shifts in buyer demographics and preferences. Aayush Puri, Head – ANAROCK Channel Partner & ANACITY Aayush Puri, Head – ANAROCK Channel Partner & ANACITY, says, 'Thanks to AI, it has become possible to create sophisticated ecosystems to analyse customer behaviour, predict purchasing patterns, and optimize sales strategies with unprecedented precision. Data from our proprietary AI tool ASTRA, which analyses consumer behaviour data from 2.8 million qualified leads via 74 different models, provides several interesting insights. For instance, there has been a gradual increase in homebuyers over 36 years of age, and a reduction in the 25-35 age group – with 36-40 years constituting the largest age group in 2024. We have also tracked budget range and unit configuration preferences, and conversion or days-to-booking timelines.' The use of such AI platforms represents a paradigm shift from traditional, intuition-based real estate practices to data-driven decision making. They deliver measurable improvements in lead conversion rates, customer targeting, and overall business efficiency. The real estate industry has historically struggled with customer profiling due to the complex, multifaceted nature of property purchasing decisions. Traditional forecasting methods often fall short in capturing the intricate relationships between property attributes, market conditions, and customer preferences. Manual lead scoring processes, heavily reliant on human judgment and fixed criteria, are prone to inconsistencies and lack the flexibility needed to adapt to rapidly changing market dynamics. Evolving Buyer Age Distribution The data shows a consistent shift toward older homebuyers, with the proportion of buyers under 35 decreasing significantly. In 2024, buyers aged 36-40 represented the largest segment, while the under-25 demographic fell to just 4% from 8% in 2020. Evolution of Home Buyer Age Groups (2020-2024) Budget Preference Changes 'Our data shows that there has been a substantial increase in preference for homes above INR 1 crore, rising from 18% in 2023 to 32% in 2024,' says Aayush Puri. 'This trend toward premium properties is particularly pronounced among buyers over 41 years of age, who are driving demand for homes in the INR 2+ crore category.' Home Buyer Budget Distribution Trends(2022-2024) Conversion (Days-to-booking) Timelines ANAROCK's AI-enabled tracking and prediction of customer conversion timelines shows that the average days to booking increased from 25 days in 2022 to 28 days in 2024. Interestingly, luxury properties above INR 3 crores showed a reduction in conversion time to 16 days in 2024, indicating that high-value customers make decisions more quickly once engaged. Average Days to Booking Trend (2022-2024) Other Findings Buying Channels – The data shows a gradual decline in digital source (developer and property aggregator website) bookings over the last three years. On the other hand, bookings via channel partners – brokers and brokerages retained by developers to market their projects – gained higher prominence. In 2024, channel partners became particularly significant in the INR 50L-1Cr and above INR 3Cr segments. Channel Source Mix Trends (2022-2024) Configuration Preferences – The analysis shows a growing preference for 3BHK units, which increased to 45% in 2024 from 38% in 2022, while 1BHK preferences declined significantly. This shift reflects changing lifestyle needs and the impact of remote work trends. Current AI Trends in Real Estate Brokering The real estate industry is undergoing an unprecedented technological transformation, with AI and machine learning at the forefront. Even as AI-powered predictive analytics now drive market forecasting, property valuations, and investment risk assessment, AI chatbots interact with customers, provide them with personalized property recommendations, and take them on virtual tours. Property marketplaces enhanced with AI can match buyers to properties with 95% accuracy based on their preferences. Traditional rule-based lead scoring is being replaced by AI-driven systems that can analyse complex behavioural patterns and demographic data. AI-based lead scoring systems can improve conversion rates by 30% through personalized property recommendations. About ANAROCK PROPERTY CONSULTANTS PVT. LTD. ANAROCK is India's leading independent real estate services company with a presence across India and the Middle East. The Chairman, Mr. Anuj Puri, is a highly respected industry veteran and Indias most prominent real estate thought leader. The Company has diversified interests across the real estate lifecycle and deploys its proprietary technology platform to accelerate marketing and sales. ANAROCKs services include Residential Broking and Technology, Retail, Commercial, Investment Banking, Hospitality (via HVS ANAROCK), Land Services, Warehousing and Logistics, Investment Management, Research and Strategic Advisory & Valuations. The Company has a unique business model, which is an amalgamation of traditional product sales supported by a modern technology platform with automated analytical and reporting tools. This offers timely solutions to its clients, while delivering financially favourable and efficient results. ANAROCK has a team of over 2000 certified and experienced real estate professionals who operate across all major Indian (Mumbai, Navi Mumbai, Pune, Ahmedabad, NCR – Delhi, Gurugram, Noida, Ghaziabad, Chennai, Bangalore, Hyderabad, Kolkata, Lucknow) and GCC markets, and within a period of two years, has successfully completed over 300 exclusive project mandates. ANAROCK also manages over 80,000 established channel partners to ensure global business coverage. Our assurance of consistent ethical dealing with clients and partners reflects our motto – Values Over Value. Please visit

HAL inducts 59 EVs under its Go Green initiative
HAL inducts 59 EVs under its Go Green initiative

The Hindu

time21 hours ago

  • The Hindu

HAL inducts 59 EVs under its Go Green initiative

The Hindustan Aeronautics Limited (HAL) has inducted 59 Electric Vehicles (EVs) under its Go Green initiative. The newly inducted EVs supplied by Convergence Energy Service Limited will be deployed across various divisions in Bengaluru, Nasik, Koraput, and Lucknow, as part of its commitment to sustainability. On Thursday D.K. Sunil, Chairman and Managing Director, HAL, launched its fleet of EVs at its corporate headquarters in Bengaluru. 'As a responsible leader in this community, HAL is aligning its operations with green and sustainable practices. The introduction of Electric Vehicles is a significant step in building an ecologically responsible and future-ready aerospace ecosystem in India. Through this initiative, HAL is embracing cleaner alternatives to reduce greenhouse gas emissions,' said Dr. Sunil. The defence PSU added that it has implemented greener initiatives, including energy conservation, water conservation, river rejuvenation and waste management practices, thereby reducing its environmental impact and promoting sustainability.

Israel, Britain and Ukraine in line: Why 19 countries are lining up to buy the new deadly missile of US, it's special because..., name is..
Israel, Britain and Ukraine in line: Why 19 countries are lining up to buy the new deadly missile of US, it's special because..., name is..

India.com

timea day ago

  • India.com

Israel, Britain and Ukraine in line: Why 19 countries are lining up to buy the new deadly missile of US, it's special because..., name is..

AIM-120 AMRAAM (USA) US AIM-120 AMRAAM missiles: In a significant development for US military defence sales, the Pentagon has signed a $3.5 billion deal with 19 countries under which AIM-120 Advanced Medium-Range Air-to-Air Missile (AMRAAM) will be given to select countries. Notably, the AIM-120 advanced medium-range air-to-air missile (AMRAAM) is a new generation air-to-air missile which has an all-weather, beyond-visual-range capability. Here are all the details you need to know about advanced Medium-Range Air-to-Air Missile and why it's dangerous. Which countries are lining up to buy AIM-120 AMRAAM missile? As per recent media reports, the Pentagon has signed a $3.5 billion deal with 19 countries, including Israel, Ukraine, and Britain, to supply AIM-120 AMRAAM missiles, marking the largest such agreement to date. Why are AIM-120 AMRAAM missiles so dangerous? The AIM-120 AMRAAM missiles are seen as one of best missiles in the world as they are faster (with a speed of 1,372 m/s), smaller and lighter, and has improved capabilities against low-altitude targets. How US State Dept authorised foreign military sales case for Turkiye to buy AMRAAM? Only a few months back in May, the US State Department has authorised a Foreign Military Sales (FMS) case for Turkiye to purchase AIM-120C-8 Advanced Medium-Range Air-to-Air Missiles and related elements of logistics and program support for an estimated cost of USD 22 million as per a report by ANI news agency. In a statement, the US State Department said, 'The State Department has made a determination approving a possible Foreign Military Sale to the Republic of Turkiye of AIM-120C-8 Advanced Medium-Range Air-to-Air Missiles and related elements of logistics and program support for an estimated cost of USD 225 million. The Defense Security Cooperation Agency delivered the required certification notifying Congress of this possible sale today.' According to the statement, the Turkish government had requested to purchase 53 AIM-120C-8 Advanced Medium Range Air-to-Air Missiles (AMRAAM); and six AIM- 120C-8 AMRAAM guidance sections. (With inputs from agencies)

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store