Astronomers discover most powerful cosmic explosions since the Big Bang
When you buy through links on our articles, Future and its syndication partners may earn a commission.
Astronomers have discovered the most powerful cosmic explosions since the Big Bang, naming them "extreme nuclear transients."
These incredibly energetic explosions occur when stars with masses at least three times greater than that of the sun are torn apart by supermassive black holes. While such events have been witnessed before, astronomers say some of the ones recently discovered are powerful enough to be classified as a new phenomenon: extreme nuclear transients (ENTs).
"We've observed stars getting ripped apart as tidal disruption events for over a decade, but these ENTs are different beasts, reaching brightnesses nearly ten times more than what we typically see," said Jason Hinkle, a researcher at the University of Hawaii's Institute for Astronomy (IfA) who led a study on these events, in a statement. "When I saw these smooth, long-lived flares from the centers of distant galaxies, I knew we were looking at something unusual."
Hinkle discovered the existence of these ENTs while combing through data gathered on long-lasting flares originating from galactic centers. Two flares caught Hinkle's eye, recorded by the European Space Agency's Gaia spacecraft in 2016 and 2018, respectively.
A third event discovered in 2020 by the Zwicky Transient Facility (ZTF) appeared similar to the two phenomena discovered by Gaia, which gave researchers clues that these belonged to a new class of extreme cosmic explosions. That's because these events appeared to release far more energy than other known star explosions, or supernovas, and seemed to last much longer.
These explosions also differed from tidal disruption events (TDEs), which are massive releases of energy that occur when extreme gravitational forces around black holes rip stars apart, flinging much of their mass outward into space. But TDEs typically last only a matter of hours; the events studied by Hinkle and other researchers appeared to last much longer. "Not only are ENTs far brighter than normal tidal disruption events, but they remain luminous for years, far surpassing the energy output of even the brightest known supernova explosions," Hinkle said in the statement.
One of these ENTs, which astronomers have named Gaia18cdj, released over 25 times more energy than the most powerful supernova ever discovered, more than the amount of energy that would be released by 100 suns throughout their entire lifetime.
RELATED STORIES:
— The most powerful explosions in the universe could reveal where gold comes from
— 'Shocking' nova explosion of dead star was 100 times brighter than the sun
— Astronomers discover black hole ripping a star apart inside a galactic collision. 'It is a peculiar event'
Aside from being the most powerful known explosions in the universe, ENTs can help astronomers learn more about monster black holes in faraway galaxies. That's because the incredible brightness of these events means they can be seen across vast distances, according to IfA's Benjamin Shappee, who co-authored the study.
"By observing these prolonged flares, we gain insights into black hole growth when the universe was half its current age and galaxies were busy places — forming stars and feeding their supermassive black holes 10 times more vigorously than they do today," Shappee said in the statement.
A study on this discovery was published June 4 in the journal Science Advances.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
2 hours ago
- Yahoo
FAA requires SpaceX to investigate Starship Flight 9 mishap
When you buy through links on our articles, Future and its syndication partners may earn a commission. SpaceX needs to figure out what happened on the ninth test flight of its Starship megarocket, the U.S. Federal Aviation Administration (FAA) has decreed. Flight 9, which lifted off from SpaceX's Starbase site in South Texas on Tuesday (May 27), ended in the destruction of both of Starship's stages — its Super Heavy booster and Ship upper stage (which is also sometimes known, somewhat confusingly, as Starship). But the FAA, which grants launch licenses for U.S. operators, is only concerned about one of those explosive events. "The mishap investigation is focused only on the loss of the Starship vehicle, which did not complete its launch or reentry as planned," FAA officials wrote in an update today (May 30). "The FAA determined that the loss of the Super Heavy booster is covered by one of the approved test induced damage exceptions requested by SpaceX for certain flight events and system components," the agency explained. "The FAA evaluated each exception prior to launch approval and verified they met public safety requirements." SpaceX broke new ground on Flight 9, reusing a Super Heavy for the first time ever. This particular booster first flew on Flight 7 in January, acing its engine burn and then returning to Starbase for a successful and dramatic catch by the launch tower's "chopstick" arms. The company did not attempt another catch on Flight 9. It conducted a variety of experiments with the booster, including bringing it down to Earth on a higher "angle of attack" to increase atmospheric drag. So, for safety's sake, SpaceX steered Super Heavy toward a "hard splashdown" in the Gulf of Mexico on Tuesday. This didn't quite work out, however. "Contact with the booster was lost shortly after the start of landing burn when it experienced a rapid unscheduled disassembly approximately 6 minutes after launch, bringing an end to the first reflight of a Super Heavy booster," SpaceX wrote in a Flight 9 recap. Ship had an even harder time on Flight 9. The upper stage was supposed to make a soft splashdown in the Indian Ocean off the coast of Western Australia about 65 minutes after launch, but it suffered an "attitude control error" that prevented the vehicle from getting into the proper orientation for reentry. "Starship then went through an automated safing process to vent the remaining pressure to place the vehicle in the safest condition for reentry," SpaceX wrote in the recap. "Contact with Starship was lost approximately 46 minutes into the flight, with all debris expected to fall within the planned hazard area in the Indian Ocean." Related stories: — SpaceX reached space with Starship Flight 9 launch, then lost control of its giant spaceship (video) — Starship and Super Heavy explained — SpaceX loses Starship rocket stage again, but catches giant Super Heavy booster during Flight 8 launch (video) This was still a considerable improvement over Ship's performance on its previous two liftoffs. On both Flight 7 and Flight 8 (which launched in March), Ship was lost less than 10 minutes after liftoff, raining debris down over the Atlantic. There have been no reports of injuries or damage to public property as a result of the Flight 9 mishap, according to the FAA. There were also minimal effects on flights in U.S. airspace — an improvement over the previous two Starship launches. "The FAA activated a Debris Response Area, out of an abundance of caution, when the Super Heavy booster experienced its anomaly over the Gulf of America during its flyback toward Texas," FAA officials wrote. "The FAA subsequently determined the debris did not fall outside of the hazard area," they added. "During the event, there were zero departure delays, one flight was diverted, and one airborne flight was held for 24 minutes."
Yahoo
3 hours ago
- Yahoo
Pacific spiny lumpsucker: The adorable little fish with a weird suction cup resembling human teeth
When you buy through links on our articles, Future and its syndication partners may earn a commission. QUICK FACTS Name: Pacific spiny lumpsucker (Eumicrotremus orbis) Where it lives: Northern Pacific, from Washington to Japan and north into the Bering Sea What it eats: Small fish, jellyfish, ctenophores, crustaceans, polychaetes Pacific spiny lumpsuckers' tiny, plump bodies and adorable appearance make them essentially wild kawaii. They are awkward swimmers, so to avoid being swept off by currents in their coastal homes, their pelvic fin has evolved to act as a suction cup, enabling them to anchor themselves to a stable surface. At just 1 to 3 inches (2.5 to 7.6 centimeters) long, they are the smallest of the 27 species of lumpsuckers, also called lumpfish, some of which can grow as long as two feet (61 cm). Lumpfish are in the same order, Scorpaeniformes, as blobfish, sea robins and stonefish. Pacific spiny lumpsuckers are small, globular fish with extra-small fins which they flap wildly to get around. It makes them able-but-awkward swimmers. Living close to the coast and facing the pulls of tides and strong currents, their pelvic fins are fused to form a surprisingly strong sucker disc which lets them attach to rocks, coral or kelp, and, in aquariums, even to the side of a tank. These sucker discs are a bit fearsome to look at from the underside – like a lamprey with a circle of human teeth. That's because, like our teeth, those of the Pacific spiny lumpsucker are made from enamel. The disc also emits a green and yellow glow — though the reasons for this are not known. Males are usually red (see 'concerned strawberries') and glow red under ultraviolet light, while females are usually green to brown and don't glow under UV rays. RELATED STORIES —Pelican eel: The midnight zone 'gulper' with a giant mouth to swallow animals bigger than itself —Pearlfish: The eel-like fish that lives up a sea cucumber's butt —Pigbutt worm: The deep-sea 'mystery blob' with the rump of a pig and a ballooned belly When it's time to reproduce, only the males settle down. They stake out a territory, usually a shallow depression in warmer water where the females lay their eggs. The male fertilizes them and then she leaves and he tends to and guards the next generation from lumpsuckers don't yet have a defense the adults have — rows of enamel bumps called odontodes covering their bodies, including that toothy-looking circle on their undersides. Eventually, they will grow odontodes in spiral rows all around their bodies to protect them against predators and collisions with rough surfaces.
Yahoo
6 hours ago
- Yahoo
June's full 'Strawberry Moon' illuminates the night sky next week: Here's how to see it
When you buy through links on our articles, Future and its syndication partners may earn a commission. This month's full "Strawberry Moon" graces the night sky on June 11, putting on a spectacular show as the fully-lit disk of Earth's natural satellite rides low over the southeastern horizon. A full moon occurs each month when the moon is positioned opposite the sun in Earth's sky, which allows the lunar disk to be fully lit from our perspective. June's full moon is commonly referred to as the "Strawberry Moon" in America, but the nickname isn't a reference to its color (though there's a decent chance it will take on a yellow-orange hue when near the horizon due to our atmosphere's habit of scattering certain wavelengths of light). Rather, the evocative name is thought to have been coined by the Native American Algonquian tribes in reference to the short strawberry harvesting season that falls around this time of year, according to the Old Farmer's Almanac. Other cultures have dubbed the event the Blooming Moon, Green Corn Moon, Birth Moon and Hatching moon, to name a few. Regardless of what you call it, one thing is certain: June's full moon is sure to put on a spectacular display when it lights up the night sky next week. This month's full moon phase will occur during the early hours of June 11 for viewers in New York, at 3:44 a.m. EDT (0744 GMT). The exact timing of the event will vary depending on your location on Earth, so be sure to check a trusted website such as for specifics about your locale. The lunar disk will appear fully lit to stargazers across America when it rises above the southeastern horizon at sunset on June 10, marking the best opportunity for the astrophotography community to capture the Strawberry Moon close to the horizon. Earth's natural satellite will appear particularly large to the naked eye at moonrise thanks to the little-understood "moon illusion," a strange effect wherein the human brain convinces us that objects are larger than they actually are when in close proximity to the horizon. Each year, June's full moon treads a predictably low path across the spring sky due to its close proximity to the summer solstice — the time of the year when the sun is at its highest. This year's Strawberry Moon will ride exceptionally low — the lowest in decades according to stargazing site — thanks in part to a phenomenon that sees the moon's tilted orbit dragged around by the sun's gravitational influence. Editor's Note: If you snap a picture of the full 'Strawberry Moon' and want to share it with readers, then please send your photo along with comments about the shoot, your name and location to spacephotos@