'Very rare' black hole energy jet discovered tearing through a spiral galaxy shaped like our own
Nearly a billion light-years away, a massive spiral galaxy is screaming into the void.
The behemoth, nicknamed J2345-0449, is a giant radio galaxy, or "super spiral" galaxy roughly three times the size of the Milky Way. Like our own spiral galaxy, it harbors a supermassive black hole at its center. But unlike the Milky Way's center, J2345-0449's supermassive black hole emits powerful radio jets — streams of fast-moving charged particles that emit radio waves — stretching more than 5 million light-years long.
Though scientists don't yet know what fuels the radio jets, a new study, published March 20 in the Monthly Notices of the Royal Astronomical Society, hints at how giant spiral galaxies could form.
Such strong radio jets are "very rare for spiral galaxies," Patrick Ogle, an astronomer at the Space Telescope Science Institute in Baltimore, who was not involved in the study, told Live Science. "In general, they can have weak radio jets, but these powerful radio jets typically come from massive elliptical galaxies. The thought behind that is that to power these really big jets requires a very massive black hole, and one that's probably also spinning. So most spiral galaxies don't have massive enough black holes in the centers to create big jets like this."
Related: Supermassive black hole at the heart of the Milky Way is approaching the cosmic speed limit, dragging space-time along with it
Data from the Hubble Space Telescope, the Giant Metrewave Radio Telescope, and the Atacama Large Millimeter Array suggest that the radio jets currently prevent stars from forming near the galaxy's center. That's likely because the jets heat up nearby gases so much that they can't collapse into new stars — or push them out of the galaxy entirely.
Though both J2345-0449 and the Milky Way are spiral galaxies, it's unlikely that we'll observe these powerful jets in our galactic hometown.
"This galaxy is so different from the Milky Way," Ogle said. "It's a lot bigger, and the black hole is a lot more massive."
Sagittarius A*, the supermassive black hole at the center of the Milky Way, is likely too small to produce radio jets as powerful as the ones observed in J2345-0449, Ogle told Live Science. Still, studying these rare galaxies could help scientists understand how the growth of supermassive black holes and of their host galaxies are related. Based on the shape of the group of stars at the center of the galaxy, it's possible that this black hole and its massive host galaxy have grown together in relative isolation, rather than gaining their mass from galaxy mergers.
RELATED STORIES
—Could the secret of supermassive black holes lie in ultralight dark matter?
—Supermassive black holes in 'little red dot' galaxies are 1,000 times larger than they should be, and astronomers don't know why
—Supermassive black hole spotted 12.9 billion light-years from Earth — and it's shooting a beam of energy right at us
In the future, detailed studies of the galaxy's supermassive black hole could also explain what powers its massive radio jets. "The extreme rarity of such galaxies implies that whatever physical process had created such huge radio jets in J2345-0449 must be very difficult to realize and maintain for long periods of time in most other spiral/disc galaxies," the researchers wrote in the study.
"Understanding these rare galaxies could provide vital clues about the unseen forces governing the universe," study co-author Shankar Ray, an astrophysicist at Christ University, Bangalore, said in a statement. "Ultimately, this study brings us one step closer to unravelling the mysteries of the cosmos, reminding us that the universe still holds surprises beyond our imagination."
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
4 hours ago
- Yahoo
Would you board a spacecraft that takes 400 years to reach Alpha Centauri?
When you buy through links on our articles, Future and its syndication partners may earn a commission. Imagine leaving Earth forever and boarding a spaceship designed to carry you and thousands of others on a one-way trip to the nearest star system, Alpha Centauri — a journey that could take 400 years. This is the bold vision behind Chrysalis, a hypothetical spacecraft that could transport 2,400 people over 25 trillion miles (40 trillion kilometers) to the exoplanet Proxima Centauri b. The project won first place in the Project Hyperion Design Competition on July 23, a contest among engineers to design a hypothetical multigenerational spacecraft built for long-duration interstellar travel and capable of sustaining a closed society over centuries. Although this plan is purely hypothetical, it leaves a pressing question for us all: Would you be willing to join this extraordinary journey? Take our poll and let us know what you think in the comments below. Related stories —'The most significant JWST finding to date': James Webb spots — then loses — a giant planet orbiting in the habitable zone of our closest sun-like star —Cosmic rays could help support alien life on worlds outside the 'Goldilocks zone' —The final 'planet parade' of 2025 rises Sunday. Here's how to see the full 6-planet show. Solve the daily Crossword
Yahoo
17 hours ago
- Yahoo
Gene that differs between humans and Neanderthals could shed light on the species' disappearance, mouse study suggests
When you buy through links on our articles, Future and its syndication partners may earn a commission. A protein that helps synthesize DNA is different in modern humans than it is in Neanderthals and Denisovans — our closest extinct relatives — and new experiments in mice genetically modified to express the modern human version hint that this may have made us behave differently. That discovery, in turn, could shed light on why Neanderthals and Denisovans vanished, researchers propose in a new study. But the significance of the findings for humans is still unclear. "It's too early to translate these findings directly to humans, as the neural circuits of mice are vastly different," study lead author, Xiangchun Ju, a postdoctoral researcher at the Okinawa Institute of Science and Technology in Japan, said in a statement. However, this work hints that the variant seen in modern humans "might have given us some evolutionary advantage in particular tasks relative to ancestral humans," such as competing for scarce resources. Key protein Previous research found that modern humans diverged from their closest evolutionary relatives, Neanderthals and Denisovans, about 600,000 years ago. It's not clear why modern humans survived while our closest relatives died off. To search for potential genetic clues to solve this mystery, the researchers analyzed the enzyme ADSL (adenylosuccinate lyase). This protein helps synthesize purine, one of the fundamental building blocks of DNA and other vital molecules. Related: A braided stream, not a family tree: How new evidence upends our understanding of how humans evolved "There are a small number of enzymes that were affected by evolutionary changes in the ancestors of modern humans. ADSL is one of them," study co-author Svante Pääbo, Nobel laureate, leader of the human evolutionary genomics unit at the Okinawa Institute of Science and Technology in Japan, and director of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, said in a statement. ADSL is made up of a chain of 484 amino acids. The version of this enzyme found in virtually all modern humans differs from that seen in both Neanderthals and Denisovans by just one amino acid — the 429th amino acid in ADSL is valine in modern humans but alanine in our extinct relatives. The scientists noted the ADSL mutation is seen in modern humans and not our closest extinct relatives, and so likely appeared after we separated from the lineage that led to Neanderthals and Denisovans. This led the researchers to investigate the possible behavioral effects of this mutation. Previous research on lab-grown cells found that the ADSL variant seen in modern humans resulted in a more unstable version of the enzyme that broke down more quickly compared to the one in Neanderthals and Denisovans. Behavior changes The new study, published Aug. 4 in the journal PNAS, similarly found that, in mice, the modern variant leads to higher levels of the chemicals that ADSL normally acts on to synthesize purine in several organs, especially the brain. This finding supported the idea that the modern human version of ADSL is less active than the variant seen in Neanderthals and Denisovans. In experiments where mice learned they could get a drink of water following specific lights or sounds, female mice genetically modified to possess a version of ADSL similar to the kind seen in modern humans were better at getting water than their littermates without this variant were. This might suggest the human-like variant made female mice better at learning to connect the dots between the water and the lights or sounds, or more motivated to seek out the water in some way. The changes in behavior and ADSL levels seen in female mice with the modern-human variant of the enzyme was not seen in male mice. "It's unclear why only female mice seemed to gain a competitive advantage," study co-author Izumi Fukunaga, a researcher at the Okinawa Institute of Science and Technology, said in a statement. "Behavior is complex." Statistical tests analyzing Neanderthal; Denisovan; and modern African, European and East Asian DNA found that mutations in the ASDL gene appeared in modern human genomes at higher rates than random variations over time would suggest, making it likely that these mutations provided some evolutionary advantage. Perhaps running counter to the new findings, prior work found that genetic disorders leading to ADSL deficiency in modern humans can lead to intellectual disability, speech and language impairment, and other problems. This suggests that during evolution, modern humans had to balance the potential benefits of reducing ADSL activity with the problems that could occur from ADSL deficiency, study co-author Shin-Yu Lee, also of the Okinawa Institute of Science and Technology, said in a statement. Implications unclear Not everyone thinks the study has direct implications for why modern humans thrived or for why Neanderthals or Denisovans disappeared. These results in mice "don't say too much about human evolution at this stage," Mark Collard, a paleoanthropologist at Simon Fraser University in Burnaby, British Columbia who did not take part in this research, told Live Science. RELATED STORIES —What was the first human species? —2.6 million-year-old stone tools reveal ancient human relatives were 'forward planning' 600,000 years earlier than thought —'It makes no sense to say there was only one origin of Homo sapiens': How the evolutionary record of Asia is complicating what we know about our species However, the strategy of using mice to study the behavioral effects of genetic differences between modern humans and our closest extinct relatives "seems very promising as a way of investigating the evolution of our brain and behavior," Collard said. "I expect we'll see a cascade of studies like this one in the next few years." Future research can investigate the specific mechanisms by which changes in ADSL activity influence behavior. Scientists can also explore how changes in ADSL activity are associated with other behaviors and how multiple genetic changes might work in concert, the study authors wrote. Solve the daily Crossword
Yahoo
21 hours ago
- Yahoo
See a razor-thin crescent moon join Jupiter and Venus in the predawn sky on Aug. 20
When you buy through links on our articles, Future and its syndication partners may earn a commission. Look to the east in the hours preceding sunrise on Aug. 20 to see a thin crescent moon rendezvous with Venus and Jupiter to form a celestial triangle in the predawn sky. TOP TELESCOPE PICK Want to see the planets of the solar system for yourself? The Celestron NexStar 8SE is ideal for beginners wanting quality, reliable and quick views of celestial objects. For a more in-depth look at our Celestron NexStar 8SE review. The 9%-lit waning crescent moon can be found roughly 15 degrees above the eastern horizon an hour and a half before sunrise on Aug. 20, embedded in the twinkling stars of the constellation Gemini. Venus will be visible as a bright 'morning star' shining approximately 5 degrees to the lower right of the lunar disk, while Jupiter will sit less than 10 degrees to the upper right of the moon, forming the highest point of the cosmic triangle. Remember, the width of your fist held at arm's length accounts for roughly 10 degrees of night sky. The bright stars Castor and Pollux will be positioned to the left of the moon in the early morning hours of Aug. 19. Mercury, meanwhile, will be visible close to the horizon, but will swiftly become lost in the glare of the sun, which rises at 6:11 a.m. ET (1011 GMT) for viewers in New York. Viewing the cosmic trio with a 6-inch telescope will reveal the dark oval of the Grimaldi Basin impact site scarring the lunar surface, along with cloud bands on the surface of Jupiter, and the moon-like phases of Venus, under good atmospheric conditions. The coming nights will see the wafer-thin lunar crescent sweep past Venus to join Mercury and the Beehive open star cluster in the constellation Cancer, the crab, ahead of its new moon phase on Aug. 23. Stargazers looking for new equipment with which to explore the night sky should check out our roundups of the best telescopes and binoculars available in 2025. Photographers should also read up on our roundups of the best lenses and cameras for astrophotography. Editor's Note: If you capture a picture of the crescent moon with Jupiter and Venus and want to share it with readers, then please send your photo(s), comments, name and location to spacephotos@