Latest news with #LSST
Yahoo
2 days ago
- Science
- Yahoo
Night sky glows purple above Vera Rubin Observatory
When you buy through links on our articles, Future and its syndication partners may earn a commission. With no light pollution nearby, the night skies around the Vera Rubin Observatory glow in brilliant colors in this timelapse photo. What is it? The Vera Rubin Observatory is designed to study dark matter, which makes up 85% of our universe but is still unknown to scientists. Dark matter can create various effects in space thanks to its gravity, such as lensing, which astronomers can capture with the observatory's telescopes, hoping to find more about what makes up dark matter. Astronomers are also using these telescopes to study dark energy as well as the Milky Way galaxy and other structures in our universe. Where is it? The Vera Rubin Observatory is located in Cerro Pachón in Chile at an elevation of 5,200 feet (1,600 meters) above sea level. Why is it amazing? In this image, the observatory's opening can be seen thanks to the glow of its its calibration LEDs. As the telescope scans the skies once every three days with the world's largest digital camera, the calibration process helps ensure all the equipment is working properly. The observatory has just begun its decade-long Legacy Survey of Space and Time (LSST) mission, where it will repeatedly scan the southern sky. Using the largest camera, the observatory captures detailed images that are so large they require a "data butler" to help manage them. Despite the size, the images could be the key to cracking the case of what dark matter truly is. Want to learn more? You can read more about the Vera Rubin Observatory, the legacy of Vera Rubin, and the hunt for dark matter. Solve the daily Crossword
Yahoo
6 days ago
- Science
- Yahoo
The Vera Rubin Observatory could find dozens of interstellar objects
When you buy through links on our articles, Future and its syndication partners may earn a commission. Scientists and astronomers are racing to study only the third-ever known interstellar visitor to the solar system, but with a powerful new observatory coming online, these enigmatic objects may soon become routine discoveries. A comet, now known as 3I/ATLAS, with 3I short for "third interstellar," sparked immediate excitement on July 1 when it was detected by the Deep Random Survey remote telescope in Chile, exhibiting a hyperbolic and highly eccentric orbit. It is the third confirmed interstellar visitor, following 1I'Oumuamua in 2017 and 2I/Borisov in 2019. But fleeting visits of high-speed guests from outside our solar system are likely to be detected much more regularly now, thanks to the new Vera C. Rubin Observatory. The Rubin observatory is located on the mountain of Cerro Pachón in Chile, and saw first light in June after a decade of construction. While it is only in its early commissioning phase, in just 10 hours of observations, Rubin discovered 2,104 new asteroids. Its science objectives include understanding the structure and evolution of the universe, mapping the Milky Way and observing transient astronomical events, but it is also set to revolutionize the detection of interstellar objects (ISOs). This is thanks to Rubin's gigantic Large Synoptic Survey Telescope (LSST) camera— the largest digital camera ever constructed for astronomy, with a staggering 3.2 gigapixels. LSST will scan giant swaths of the sky at once and observe the entire southern sky every few nights. Due to its wide field, depth, and how frequently it observes the same regions of sky, Rubin is uniquely capable of catching fast, faint objects like 1I/'Oumuamua or 3I/ATLAS. ISOs like 1I/'Oumuamua or 3I/ATLAS move quickly and can easily pass through our sky unnoticed if the sky is not being scanned often and everywhere. Rubin will be looking constantly and broadly, giving astronomers the best chance yet to catch these fleeting visitors, while also being able to detect objects fainter than nearly any ground-based survey before it. Rubin's powerful imaging and automatic image comparison, coupled with an automated alert system — with millions triggered and filtered every night — means it will pick up telltale motion and flag a potential ISO. So how many interstellar objects might Rubin actually detect? The answer varies widely depending on which assumptions scientists use. We are in the early days of detecting ISOs, so it is difficult to estimate how many Rubin is likely to pick up; we know little about their overall frequency, size range, brightness, if they exhibit cometary activity, and how LSST performs. However, a few recent papers on the topic provide some useful context for how many ISOs LSST might be able to detect, depending on a range of variables. In a 2022 paper, Hoover et al. estimate that LSST will detect on the order of between 0.9-1.9 ISOs every year, or around 15 such objects across Rubin's 10-year observational campaign. It notes that these are lower limits, which can be updated when there is more data on the number density and size frequency of interstellar objects. Additionally, Hoover et al. estimate the chances that Rubin will find an ISO reachable by the Comet Interceptor and Bridge mission concepts, which would fly by an interstellar object as it passes through our solar system. These missions would be launched to lurk in wait, ready to intercept and rendezvous with a passing ISO. The researchers concluded that there is just a roughly 0.07% chance that LSST would identify an ISO target available to Comet Interceptor, which has limited capability to change its velocity, while LSST could detect around three to seven ISOs reachable by Bridge, a more capable but yet-to-be-approved mission concept. RELATED STORIES — New interstellar object 3I/ATLAS: Everything we know about the rare cosmic visitor — Vera C Rubin Observatory reveals 1st stunning images of the cosmos. Scientists are 'beyond excited about what's coming' — 'Oumuamua: A guide to the 1st known interstellar visitor Another estimate, from a 2023 paper by Ezell and Loeb, expects LSST to detect one small ISO 3 to 164 feet (1 to 50 meters) wide every one to two years. A more optimistic assessment comes from Marceta and Seligman in a 2023 paper. They find, based on a simulated suite of galactic populations of asteroidal interstellar objects and their trajectories and kinematics, that Rubin should detect between around 0 and 70 asteroidal interstellar objects every year. Again, one of the main factors is how many objects of different sizes actually exist in the population of ISOs, as well as their albedo, or how much light they reflect. With just three confirmed interstellar visitors so far, much remains unknown about the number, size, and diversity of ISOs. But with the Rubin Observatory coming online, sightings of these fast-moving cosmic messengers may soon shift from rare events to regular science, offering unique insights into the galaxy beyond our solar system. Solve the daily Crossword


Forbes
13-07-2025
- Science
- Forbes
World's Biggest Camera May Find 50 Interstellar Objects, Scientists Say
Countless star trails appear as colorful brushstrokes spread across the night sky above NSF–DOE Vera ... More C. Rubin Observatory, jointly funded by the U.S. National Science Foundation (NSF) and the U.S. Department of Energy (DOE) Office of Science. This mesmerizing image was created using long-exposure photography, a technique in which a photographer allows light to enter their camera lens for a period of several minutes to several hours. The camera captures the subject's movements, and the resulting image shows the flow of time in a single shot. During its decade-long Legacy Survey of Space and Time (LSST) Rubin will use a technique known as difference imaging: equipped with the largest camera ever built, Rubin will image the southern sky every few nights. Scientists will stack these images into ultra-long exposures and create a template image of the southern sky. When this template is compared to individual images, scientists will be able to identify 'movements' in the night sky, such as new supernovae or the 'pulsations' of variable stars. After 10 years and thousands of exposures, Rubin will produce an unprecedented ultra-wide, ultra-high-definition, time-lapse record of our Universe — the ultimate movie of the night sky. This image was captured by Hernán Stockebrand, a NOIRLab Audiovisual Ambassador. The new Vera C. Rubin Observatory detected interstellar object 3I/ATLAS and may detect up to 50 more during its 10-year mission, according to a new model. The observatory in Chile, which unveiled its first images last month, is equipped with a unique view of the night sky, supported by the world's largest camera. What Is The Vera C. Rubin Observatory? A new survey telescope in Chile, the Rubin Observatory, looks set to become astronomy's most ambitious and productive eye on the sky ever made. It will begin a 10-year mission later this year, during which it's expected to discover 10 million supernovas, 20 billion galaxies, and millions of asteroids and comets. About the size of a car, Rubin's $168 million LSSTCam imager — the most sensitive optical device ever made — weighs over three tons and captures 3,200-megapixel images. Every image is big enough to fill 378 4K screens. It took 10 years to manufacture, features six optical filters, and, crucially, has a 9.6 square-degree field of view — it can see a large portion of the sky at once. What Is 3I/ATLAS? Discovered on July 1, 2025, by the ATLAS telescope network at El Sauce Observatory in Chile and thought to be around 12 miles (20 kilometers) in diameter, 3I/ATLAS's eccentric trajectory suggests that it's from outside the solar system. The third interstellar object ever to be found after 'Oumuamua in 2017 and a comet called 2I/Borisov in 2019, 3I/ATLAS could be three billion years older than the solar system — the oldest comet ever seen. It could even be up to 14 billion years old, according to Matthew Hopkins, an astronomer at the University of Oxford, who spoke on July 11 at the Royal Astronomical Society's National Astronomy Meeting in Durham, U.K., about a new model, the Ōtautahi–Oxford Model, that simulates the properties of interstellar objects based on their orbits and likely stellar origins. Why Rubin Will Find Interstellar Objects The next interstellar object to enter the solar system is likely to be discovered by the Rubin telescope. Objets such as 3I/ATLAS are incredibly faint when they are far from the sun, but Rubin's wide field and large aperture make it ideal for finding interstellar objects. 'Rubin's speed means it also scans 18,000 square degrees every few nights,' said Bob Blum, Director of Rubin Observatory Operations, in an email. 'The combination of depth, field of view, and speed is ideal for finding rare objects.' With all of this in its favor, Rubin is expected to find any interstellar objects sooner than other facilities because it will detect them when they're farther away. 'We expect Rubin will be able to find at least multiple 10's of these rare interlopers over the course of its 10-year survey,' said Bloom. It's already begun its work, with Rubin's team locating 3I/ATLAS in test images taken since early June and now studying the object in the night sky. A Surprising Discovery For astronomers working on how to best detect interstellar objects, the sudden arrival of 3I/ATLAS took them by surprise — just as they were preparing to begin using the Rubin Observatory. 'The solar system science community was already excited about the potential discoveries Rubin will make in the next 10 years, including an unprecedented number of interstellar objects,' said co-researcher Dr Rosemary Dorsey of the University of Helsinki. 'The discovery of 3I suggests that prospects for Rubin may now be more optimistic; we may find about 50 objects, of which some would be similar in size to 3I." Wishing you clear skies and wide eyes.


Forbes
11-07-2025
- Science
- Forbes
3I/Atlas Isn't The First Interstellar Object To Visit Our Solar System
An interstellar object – a comet from a distant star system – is passing through the space between Jupiter and Mars, and according to a recent study, Comet 3I/Atlas may be 3 billion years older than our Solar System. CERRO PACHON, CHILE - JUNE 08: (——EDITORIAL USE ONLY - MANDATORY CREDIT - 'OBSERVATORIO VERA C. ... More RUBIN / HANDOUT' - NO MARKETING NO ADVERTISING CAMPAIGNS - DISTRIBUTED AS A SERVICE TO CLIENTS——) The night sky dazzles above Rubin Observatory in this image in Cerro Pachon, Chile on June 08, 2025. Beginning in late 2025, Rubin Observatory's decade-long Legacy Survey of Space and Time (LSST) will generate an ultra-wide, ultra-high-definition time-lapse record of the Universe at Observatorio Vera C. Rubin, in Cerro Pachon, Chile. (Photo by OBSERVATORIO VERA C. RUBIN/ HANDOUT/Anadolu via Getty Images) Comet 3I/Atlas appears to hail from somewhere toward the center of the Milky Way (which makes sense, because most of the galaxy is 'toward the middle' from Earth). And according to astronomer Matthew Hopkins and his colleagues, the comet entered our Solar System at a steep angle, which suggests that it came from a region of the galaxy called the 'thick disk.' Most of the stars, gas, and dust that make up our galaxy orbit around the center in the same plane, a spiral-armed disk about 400 light years deep. But about 10% of the Milky Way's stars (by mass) orbit in the 1000 light years 'above' and 'below' the thin disk, like the stellar bread on a galactic sandwich. The thick disk is home to older stars with simpler chemical makeup than our young Sun, and there's very little interstellar gas or dust drifting between them. In other words, interstellar comet 3I/Atlas didn't just come from an alien star system – it came from a cosmic neighborhood very different, and much older than, our own. "We think there's a two-thirds chance this comet is older than the Solar System, and that it's been drifting through interstellar space ever since," said astronomer Chris Lintott, a coauthor of the study, in a recent press release. But though Comet 3I/Atlas may be the oldest interstellar object we've ever seen, it's not the first – it may even be one of thousands. Interstellar Object 'Oumuamua: A Messenger From Afar, Arriving First This artist's illustration shows what 'Oumuamua might look like if we had been able to get a closer ... More look. Interstellar object 1I/'Oumuamua was 21 million miles from Earth and already on its way out of the system when astronomers first spotted it in October 2017. That meant we got just a fleeting glimpse of the long, thin, red-hued chunk of rock as it tumbled into the cosmic distance – just enough to stir up wild speculation about alien space probes, in fact. After 'Oumuamua swung past the Sun, it accelerated slightly. Astronomers watching the asteroid's progress calculated that the pull of the Sun's gravity couldn't have accounted for that burst of speed. 'Oumuamua moved more like a comet than an asteroid; as comets get closer to the Sun, their icy nucleus starts to evaporate, releasing plumes of gas into space – which in turn give the comet a push that can speed it up or change its course. But 'Oumuamua moved like a comet, it didn't look like one. All that erupting gas and dust usually forms a cloud, or coma, around the comet's nucleus, along with a tail pointing away from the Sun. Harvard University astrophysicist Avi Loeb proposed that 'Oumuamua was actually a thin solar sail (a sail designed to catch solar radiation instead of wind), which had caught the solar wind and used it to accelerate. Other astronomers pointed out that the idea made no sense, because 'Oumuamua was tumbling as it passed through the Solar System, and a tumbling solar sail wouldn't have been very effective at all. It turned out that, according to a 2023 study, 'Oumuamua was really a comet all along – just a weird one. As it flew through interstellar space, cosmic rays had broken apart about a third of the water molecules trapped inside 'Oumuamua, creating a lot of loose hydrogen molecules. When 'Oumuamua approached the Sun and started venting gas, the hydrogen was too light to drag any dust along with it as it erupted, so the comet's coma and tail were invisible but could explain the bizarre acceleration. Interstellar Object Borisov: A Rogue Comet From A Dim Red Star The Hubble Space Telescope captured this image of Borisov when it was about 260 million miles away. Another piece of a distant star system, a rogue comet probably born around a red dwarf star, swept through our Solar System in late 2019, streaming a tail of gas and dust 100,000 miles long. (The comet itself, 2I/Borisov, was only about a mile wide when astronomers first spotted it.) 'We reasoned that Borisov is likely a representative of the star system it comes from,' Auburn University astronomer Dennis Bodewits said in a 2020 press release from NASA. In other words, 2I/Borisov's chemical makeup could offer some clues about the alien star it once orbited. The comet contained a surprising amount of carbon monoxide ice (some comets in our Solar System contain carbon monoxide ice, too, but not nearly as much of it), according to data from the Hubble Space Telescope and the National Radio Astronomy Observatory's Atacama Large Millimeter/submillimeter Array (ALMA), Because carbon monoxide needs much colder temperatures to freeze than water does, 2I/Borisov must have formed somewhere very cold: less than −337.04° Fahrenheit. That could point to the system of planets orbiting a type of small, dim star called a red dwarf. "Red dwarfs are much smaller and dimmer than the Sun, so the planet-forming material around them would be colder than the building blocks of our solar system," explained NASA in its press release at the time. And the odds are in favor of the red dwarf idea, because these dim, cool-burning stars make up about 75% of the stars in our galaxy. On the other hand, the carbon monoxide ice could also point to someplace like the outskirts of a system like ours; at 3.7 billion miles away from the Sun, dwarf planet Pluto's surface temperature ranges from -375° to -400° Fahrenheit, and there is carbon monoxide ice on its surface. So it's possible that 2I/Borisov is actually a chunk of a dwarf exoplanet – another star's version of Pluto – which got knocked into space by a meteor impact. Or maybe 2I/Borisov was always just a mile-wide clump of ice and dust that coalesced in the chilly outer reaches of its star system. Either way, something must have boosted the comet to escape velocity, letting it slip the bonds of its star's gravity and travel through interstellar space. In our own Solar System, migrating gas giants probably boosted some of the comets of the Oort Cloud into their long, lopsided orbits, and they may also have kicked an entire planet out into interstellar space. The same process could have flung 2I/Borisov out of its own star system. Interstellar Object Atlas: The Oldest Comet Ever Seen This diagram shows Atlas's likely route through our Solar System. And now, for the third time in less than a decade, another comet from another distant star system is passing through. Like 2I/Borisov, 3I/Atlas is probably a comet. Telescopes here on Earth can't see 3I/Atlas in much detail yet, but what they can see suggests that it's surrounded by a haze of gas, some of which is streaming outward to form a short tail, which will get larger as the comet gets closer to the Sun. That means 3I/Atlas is probably made of more ice than rock. And if Hopkins and his colleagues are right about its origins, a lot of that ice should be water, rather than other ices like carbon monoxide, carbon dioxide, or methane. 'The gases that may be seen in the future as 3I is heated by the Sun will test our model,' said co-author University of Canterbury in New Zealand astronomer Michele Bannister, a co-author of the recent study, in a press release. Comet 3I/Atlas looks larger than either 1I/'Oumuamua or 2I/Borisov; Atlas is somewhere between 6.2 and 12.4 miles wide, while Borisov was about a mile wide. Cigar-shaped 'Oumuamua, the smallest of the three, was less than 3,000 feet long and less than 500 feet wide. And Atlas is also 'moving considerably faster than the other two extrasolar objects that we previously discovered,' according to University of Lancashire astronomer Mark Norris in comments to Agence France Presse. 'Oumuamua was zooming along at around 86,000 miles per hour when it passed the Sun, and Borizov whizzed past at 98,000 miles per hour. Meanwhile, astronomers have already clocked Atlas at around 137,000 miles per hour, and it will be moving even faster by the time it passes by the Sun in October 2025. Interstellar Objects Pass Through More Often Than We Thought Authorities and scientists attend a simultaneous conference with the United States, after the first ... More images of deep space captured by the Vera Rubin Observatory in Chile were revealed, in Santiago on June 23, 2025. The team behind the long-awaited Vera Rubin Observatory in Chile published their first images on June 23, 2025, revealing breathtaking views of star-forming regions as well as distant galaxies. More than two decades in the making, the giant telescope, funded by the US National Science Foundation and the US Department of Energy is perched at the summit of Cerro Pachon in central Chile, where dark skies and dry air provide ideal conditions for observing the cosmos. (Photo by Rodrigo ARANGUA / AFP) (Photo by RODRIGO ARANGUA/AFP via Getty Images) So why are astronomers suddenly so many interstellar objects wandering through our Solar System? It's not because we're the hot new travel destination for wandering space rocks, but because new telescopes – like Vera Rubin – make it possible to see smaller, dimmer, and more distant objects. The presence of interstellar objects in our Solar System isn't anything new, but our ability to spot them definitely is. 'Astronomers estimate that an interstellar object similar to 'Oumuamua passes through the inner solar system about once per year, but they are faint and hard to spot and have been missed until now. It is only recently that survey telescopes, such as Pan-STARRS1 [which spotted 'Oumuamua], are powerful enough to have a chance to discover them,' explains NASA on its webpage for 'Oumuamua. And now that the Vera Rubin Observatory is up and running, astronomers like Norris are optimistic about spotting more interstellar objects passing through the Solar System on their way to (and from) parts unknown: maybe as many as several a year. Meanwhile, a 2022 study suggested that we may actually have a few million samples of other star systems orbiting our own Sun. If University of Edinburg astronomer and statistician Jorge Peñarrubia is right, our Sun may have trapped a few million passing interstellar objects in the outer reaches of our Solar system. Some of them are stuck permanently, while others may make a couple of laps around the Sun and slingshot off into interstellar space again. It's a fascinating reminder that our Solar System is part of a wider galaxy – and not as isolated from it as we tend to think. As John Noonan of the Lunar and Planetary Laboratory at the University of Arizona, Tucson, said in the same 2020 NASA press release,'With an interstellar comet passing through our own solar system, it's like we get a sample of a planet orbiting another star showing up in our own backyard.'
Yahoo
11-07-2025
- Science
- Yahoo
Durham scientists discover more galaxies in Milky Way than previously thought
The Milky Way could be home to more galaxies than initially believed, scientists at Durham University have discovered. Research by cosmologists at the university suggests there are 80, or possibly even 100, more satellite galaxies orbiting our galaxy at close distances. They made this prediction using a new technique that combines high-resolution supercomputer simulations and novel mathematical modelling. If observed by telescopes, the extra galaxies could provide strong support for the Lambda Cold Dark Matter (LCDM) theory, which explains how galaxies form and the large-scale structure of the universe. Dr Isabel Santos-Santos, lead researcher at the Institute for Computational Cosmology, Department of Physics, Durham University, said: "We know the Milky Way has some 60 confirmed companion satellite galaxies, but we think there should be dozens more of these faint galaxies orbiting around the Milky Way at close distances." Research will be presented at the Royal Astronomical Society's National Astronomy Meeting, held at Durham University. (Image: Durham University) The Durham-led research is based on the LCDM model, where ordinary matter represents only five per cent of the universe's total content, 25 per cent is cold dark matter (CDM), and the remaining 70 per cent is dark energy. In this model, galaxies form in the centre of large clumps of dark matter called halos. The research shows the Milky Way's missing satellites are extremely faint galaxies, stripped almost entirely of their parent dark matter halos by the gravity of the Milky Way's halo. These so-called "orphan" galaxies are lost in most simulations, but should have survived in the real universe. Dr Santos-Santos added: "One day soon we may be able to see these 'missing' galaxies, which would be hugely exciting and could tell us more about how the universe came to be as we see it today." The researchers believe that advances in telescopes and instruments like the Rubin Observatory LSST camera, which recently saw its first light, will allow astronomers to detect these very faint objects for the first time. Their results showed that halos of dark matter, which may host a satellite galaxy, have been orbiting around the central Milky Way halo for most of the age of the universe. This has led to the stripping of their dark matter and stellar mass, rendering them extremely small and faint. As a result, the research predicts that the total number of satellite galaxies likely to exist around the Milky Way is around 80, or potentially up to 100 more than currently known. Professor Carlos Frenk, co-researcher at the Institute for Computational Cosmology, Department of Physics, Durham University, said: "If the population of very faint satellites that we are predicting is discovered with new data, it would be a remarkable success of the LCDM theory of galaxy formation. 'Pure joy': School officially recognised for its top-notch play facilities Pub in 'Idyllic' village on edge of stunning national park hits market for £495,000 Newton Aycliffe man's cause of death emerges as inquest opened into bike crash death "It would also provide a clear illustration of the power of physics and mathematics. "It doesn't get much better than this." The research is funded by the European Research Council and the Science and Technology Facilities Council (STFC).