Latest news with #PalomarObservatory
Yahoo
2 days ago
- Science
- Yahoo
Spotify-like AI helps discover never-before-seen supernova as greedy star attempts to eat a black hole
When you buy through links on our articles, Future and its syndication partners may earn a commission. Scientists may have spotted a never-before-seen kind of supernova, after using a Spotify-like artificial intelligence (AI) to scan the skies for strange activity. The AI unearthed signs of what could have been a huge star blowing up just as it was attempting to gulp down a nearby black hole. The stellar explosion, dubbed SN 2023zkd, was spotted in July 2023 with the Zwicky Transient Facility, a full-sky astronomical survey based at the Palomar Observatory in California. But Zwicky didn't find the explosion through happenstance. Rather, it was guided to the right spot using an algorithm optimized to find weird night-sky activity. Spotting the signs of a supernova early is key to catching how supernovas start, evolve and then fade away — providing insight into how these explosions work. In this case, the AI found unusual brightenings months before the explosion happened, study co-lead authors Alex Gagliano, a postdoctoral researcher at the Institute For AI and Fundamental Interactions, and Ashley Villar, a supernova researcher and assistant professor at the Harvard-Smithsonian Center for Astrophysics, told Live Science in an email. This quick alert enabled a number of large observatories to get in on the action and provide observations across a large spectrum of wavelengths. Related: 2 'new stars' have exploded into the night sky at once — potentially for the first time in history While there are a couple of ideas about what these telescopes actually saw, the scientists behind the new study say the explosion was most likely from a huge star orbiting the black hole. As these two objects tugged at each other, the separation between them decreased. Eventually, the star attempted to consume the black hole and exploded in the process, due to gravitational stress. Alternatively, it could have been that the black hole shredded the star via a process known as "spaghettification," causing the explosion, but the data does not suggest that as strongly, Gagliano said. By looking at the massive star's chemical composition, the team also found that it had not lost all of its outermost material before it exploded. "This suggests that binary interaction is a lot messier than astronomers have thought," Gagliano said. "Upcoming events will tell us how the explosions of massive stars are shaped by companion interaction, which is very difficult to model at present." Gagliano cautioned that nobody has seen enough of these explosions to fully predict how a huge star and a black hole might interact. The data, however, is "very hard to explain without a binary system," meaning that a black hole and star were very likely involved in some way. AI assistance The AI used in the discovery is called Lightcurve Anomaly Identification and Similarity Search (LAISS). The astronomy AI is based on the Spotify algorithm, so LAISS recommends astronomical observations in a similar way that Spotify users are guided to songs they may enjoy. The latest explosion came to the attention of LAISS due to properties from the light of the binary system, and its location 730 million light-years from Earth. Features of SN 2023zkd were "compared against a large reference dataset of known objects to identify statistical outliers," Gagliano said. "Anomalous signals may indicate rare or previously unseen phenomena." Once LAISS finds something interesting, a bot in Slack, an instant messaging service, flags candidates and posts them into a dedicated channel, enabling team members to check out the findings in real time. "This streamlined system enables astronomers to rapidly target the most promising and unusual discoveries," Gagliano said. After the explosion, the light pattern of SN 2023zkd became very strange. At first it brightened just like a typical supernova, then declined. But astronomers really began to pay attention when it brightened once again. Archival data showed more strange behavior: The star, which had been at a consistent brightness for a while, was gradually getting brighter in the four years before it exploded. Astronomers think the light comes from the excess material the star was shedding. At first, it got brighter as the shockwave from the supernova plowed into lower-density gas in the region. Another brightness peak later came as the shockwave continued into a cloud of dust. RELATED STORIES —Did a supernova 6 million years ago kickstart evolution in Africa? New study offers a clue —Could a supernova ever destroy Earth? —Rare quadruple supernova on our 'cosmic doorstep' will shine brighter than the moon when it blows up in 23 billion years As for the presence of the black hole, astronomers inferred it both from the structure of the gas and dust, as well as the strange stellar brightening in the years before the explosion. LAISS helped astronomers to see all this extra detail. "If we had waited until a human flagged 2023zkd, we would have missed the early signatures of the surrounding disk and the existence of a black hole companion. AI systems like LAISS help us regularly find rare explosions, without relying on luck, and early enough to uncover their origins," Gagliano said. The results were published on Wednesday (Aug. 13) in The Astrophysical Journal. Black hole quiz: How supermassive is your knowledge of the universe? Solve the daily Crossword
Yahoo
03-07-2025
- Science
- Yahoo
Astronomers spot 'interstellar object' speeding through solar system
An "interstellar object" is speeding toward the inner solar system, where Earth is located, astronomers have confirmed. The object -- likely a comet -- was first detected in data collected between by the Asteroid Terrestrial-impact Last Alert System, or ATLAS -- an asteroid impact early warning system in Rio Hurtado, Chile, funded by NASA, the space agency announced on Tuesday. MORE: NASA detects new planet with temperatures that suggest habitable conditions Properties such as a marginal coma and short tail indicate signs of cometary activity, according to the Minor Planet Center. Numerous telescopes have reported additional observations since the object was first reported, NASA said. Observations from three different ATLAS telescopes around the world -- as well as the Zwicky Transient Facility at the Palomar Observatory in San Diego County, California -- dating back to June 14 were gathered and provided data that supports the existence of the comet, according to a NASA update released Wednesday. It appears to be originating from interstellar space, arriving from the direction of the constellation Sagittarius, and is currently about 420 million miles from Earth, according to NASA. The comet poses no threat to Earth and will remain at a distance of at least 150 million miles, astronomers said. It is estimated to reach its closest approach to the sun around Oct. 30, where it will cross at about 130 million miles away, just inside the orbit of Mars, according to NASA. MORE: NASA catches a glimpse of 'city-killer' asteroid before it disappears until 2028 The object, dubbed "A11pl3Z" or "3I/ATLAS," spans approximately 25 miles, Josep Trigo-Rodriguez, as astrophysicist at the Institute of Space Sciences near Barcelona, Spain, told The Associated Press. It's traveling at a speed of about 152,000 mph and approaching the inner solar system from the bar of the Milky Way, Live Science reported. Its trajectory suggests it did not originate in this solar system, according to This is only the third time in history that an interstellar object entering the inner solar system has been recorded. A cigar-shaped interstellar object called "Oumuamua," the Hawaiian word for "scout," was detected in 2017. And in 2019, an object named "21/Borisov" -- a comet that likely strayed from another star system -- was located. MORE: Asteroid nearly hits Earth in Siberia, with a 2nd massive asteroid passing this week Astronomers will continue to investigate the size and physical properties of the comet through September, after which it will pass too close to the sun to remain visible, NASA said. The comet is expected to reappear on the other side of the sun in early December, NASA said.


Gizmodo
11-05-2025
- Science
- Gizmodo
A Rogue Black Hole of Unusual Size Is Devouring Stars in a Distant Galaxy
Astronomers have spotted an apparent supermassive black hole snacking on a star 600 million light-years away, wandering through a galaxy with an even larger black hole at its core. The event, dubbed AT2024tvd, was first spotted by the Palomar Observatory's Zwicky Transient Facility and later confirmed by powerhouse space telescopes including Hubble and Chandra, which helped zero in on the cosmic crime scene. To the researchers' surprise, the responsible black hole was not at the center of its host galaxy, as supermassive black holes tend to be. Rather, this one was 2,600 light-years from the galactic center—a huge distance on paper, but really just one-tenth the distance between our Sun and Sagittarius A*, the black hole at the center of the Milky Way. Tidal disruption events (TDEs) like this one occur when a black hole's gravity pulls on a star so violently that the less massive ball of gas is stretched, shredded, and swirled around the black hole, in a process delightfully called spaghettification. The fleeting burst of energy from the event is gargantuan, even rivaling a supernova—the explosive death of a massive star—in brightness. The burst of light is also visible across the electromagnetic spectrum, making TDEs an invaluable resource for spotting black holes that might otherwise be too quiet or hidden to detect, such as the recent rogue object. What makes AT2024tvd special is that it's the first offset TDE discovered by optical surveys, according to a forthcoming paper in The Astrophysical Journal Letters, which is also posted on the preprint server arXiv. The achievement demonstrates how rogue black holes—warping spacetime and shrouded in darkness as they move through the cosmos—can be spotted, as long as an unfortunate object sacrifices itself for the massive object to reveal itself. 'Tidal disruption events hold great promise for illuminating the presence of massive black holes that we would otherwise not be able to detect,' said study co-author Ryan Chornock, a researcher at the University of California – Berkeley and a member of the ZTF team, in a NASA release. 'Theorists have predicted that a population of massive black holes located away from the centers of galaxies must exist, but now we can use TDEs to find them.' The team has a couple of ideas about how the rogue black hole ended up offset in the galaxy, and so close to the supermassive black hole at its core. (The rogue black hole's mass is estimated to be roughly one million solar masses, at least ten times smaller than the black hole at the galactic center.) One option is that the black hole was at the center of a smaller galaxy that was subsumed by the larger galaxy, and now the black hole is simply drifting through the larger galaxy. Another possibility is that the black hole was the weakest link in what was once a three-body system, and was pushed out by the bigger objects; in other words, two larger black holes may lurk at the galaxy's core, and the rogue black hole was ejected thousands of light-years out. 'If the black hole went through a triple interaction with two other black holes in the galaxy's core, it can still remain bound to the galaxy, orbiting around the central region,' said Yuhan Yao, also a researcher at UC Berkeley and the lead author of the study, in the same release. But at the present moment, the team isn't sure if the black hole was pushed out or is being dragged in by the larger black hole. With future instruments like the Vera Rubin Observatory and the Roman Space Telescope coming online, astronomers are hopeful this is just the beginning of an entirely new class of discoveries. Because if there's anything more unsettling than a black hole swallowing a star, it's the idea that the hungry, hungry objects are just drifting through space in unexpected locations.