Latest news with #SpaceTelescopeScienceInstitute
Yahoo
25-07-2025
- Science
- Yahoo
Surprise Cosmic Clouds Likened to Finding Ice Cubes in a Volcano
Astronomers have found 11 unexpectedly cold hydrogen clouds hiding in the superheated turbulence of the Fermi Bubbles, in a discovery likened to finding ice cubes inside a volcano. The Fermi Bubbles are two lobes of incredibly energetic gas that extend 25,000 light-years above and below the Milky Way's disk, spanning a total height of 50,000 light-years. These still-mysterious structures were revealed in 2010 by the Fermi Gamma-Ray Space Telescope, which gave them their name. They originated from an outburst of galactic proportions, likely from the Milky Way's central black hole, and are moving at millions of miles per hour. Related: Now, using the unique capabilities of the US National Science Foundation Green Bank Telescope (NSF GBT), astronomers performed the deepest-ever radio survey of the Fermi Bubbles, twice as sensitive as previous surveys, and discovered 11 relatively cool, neutral hydrogen clouds embedded within these extreme environs. The Milky Way harbors many violent environments and the Fermi Bubbles are among the most intense. The plasma here reaches a temperature around 1 million Kelvin (999,730 degrees Celsius), so it's a surprise to spot hydrogen clouds that are at least 100 times cooler, or about 10,000 Kelvin. In fact, seeing such relatively frigid hydrogen clouds within the Fermi Bubbles is akin to "finding ice cubes in a volcano," explains Andrew Fox, astronomer at the Space Telescope Science Institute and study co-author. The discovery provides an existential galactic conundrum: "We didn't know that cold gas can survive in these extreme outflows. This challenges our understanding of how galaxies recycle and expel matter," says Rongmon Bordoloi, astrophysicist at North Carolina State University and the study's lead researcher. The hydrogen clouds vary in mass and size. The 8 that have been more clearly resolved are up to 1,470 solar masses and range between 13 and 91 light-years in length. They're also the highest latitude-hydrogen clouds yet discovered, about 13,000 light-years above the Milky Way's center. Given their structure and energetic surroundings, astronomers estimate that the hydrogen clouds may be several million years old. This matches an independent estimate of the age of the Fermi Bubbles themselves, challenging other formation models that suggest the bubbles could be as many as tens of millions of years in age. "It wouldn't be possible for the clouds to be present at all if the Fermi bubbles were 10 million years old or older," explains Bordoloi. Their extrapolated age suggests the hydrogen clouds were carried high into the Fermi Bubbles by the nuclear wind, or outflow from the Milky Way's nucleus. This wind, which blasts out at hundreds of kilometers per second, is responsible for cycling mass and energy throughout a galaxy, circulating it from the galactic center to the galactic halo. Jay Lockman, astronomer at the Green Bank Observatory and study co-author, clarifies the importance of the clouds in revealing the nuclear wind: "Just as you can't see the motion of the wind on Earth unless there are clouds to track it, we can't see the hot wind from the Milky Way but can detect radio emission from the cold clouds it carries along." As on Earth, these clouds are ephemeral, with a projected lifespan of up to 8 million years – a snap of the fingers on galactic timescales. In fact, they've already changed much, and may have been part of a larger cloud that was fragmented by the surrounding plasma. Conversely, the hydrogen clouds may have condensed from the surrounding plasma due to thermal instability. Overall, this study has universal implications. Finding such cool hydrogen clouds within the chaos of the Fermi Bubbles isn't just relevant to the Milky Way. It also helps improve models of galactic evolution, reshaping astronomers' understanding of how matter and energy are cycled throughout galaxies across the cosmos. This research is published in The Astrophysical Journal Letters. Related News Is 3I/ATLAS 'Comet' an Alien Probe? These Are The Signs to Look For. Early Forms of Cells Could Form in The Lakes of Saturn's Moon Titan Blinking 'Unicorn' Discovered in Space a One-of-a-Kind Object Solve the daily Crossword


CBS News
26-06-2025
- Science
- CBS News
NASA's James Webb Space Telescope captures images of what's believed to be newly discovered exoplanet
NASA's James Webb Space Telescope has captured evidence of a planet beyond the solar system for the first time since its launch in 2021. The exoplanet, a planet beyond our solar system, has been dubbed TWA 7b and orbits the young nearby star TWA 7, NASA said. Scientists believe the exoplanet is around the mass of Saturn and is about 50 times the distance of Earth from the Sun, according to NASA. Usually, planets of this size outside of our solar system are difficult to detect, but scientists used a technique called high-contrast imaging to detect the exoplanet, NASA said. Images of the exoplanet were taken using a coronagraph, which allows researchers to suppress the bright glare of a star to reveal faint nearby objects. Astronomers using the James Webb Space Telescope have captured compelling evidence of a planet with a mass similar to Saturn orbiting the young nearby star TWA 7. Space Telescope Science Institute Scientists said there was a very small chance the images could show a background galaxy, but evidence "strongly points to the source being a previously undiscovered planet." "Our observations reveal a strong candidate for a planet shaping the structure of the TWA 7 debris disk, and its position is exactly where we expected to find a planet of this mass," said lead researcher Anne-Marie Lagrange. The exoplanet could be a young and cold planet with a mass around 0.3 times that of Jupiter and a temperature near 120 degrees Fahrenheit, according to initial analysis from researchers. The first time scientists discovered an exoplanet was back in 1992. Astronomers have discovered nearly 6,000 exoplanets since then, but none of them are known to be habitable.
Yahoo
12-06-2025
- Science
- Yahoo
Webb telescope spots infant planets in different stages of development
By Will Dunham WASHINGTON (Reuters) -The James Webb Space Telescope has observed two large planets at different stages of infancy - one with an atmosphere brimming with dusty clouds and the other encircled by a disk of material - orbiting a young sun-like star in a discovery that illustrates the complex nature of how planetary systems develop. The two gas giant planets, both more massive than our solar system's largest planet Jupiter, were directly imaged by Webb in a planetary system located in the Milky Way galaxy about 310 light years from Earth in the direction of the constellation Musca. A light-year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km). Astronomers have detected more than 5,900 planets beyond our solar system - called exoplanets - since the 1990s, with less than 2% of these directly imaged like these two. It is rare to find exoplanets in their early developmental stages. The birth of a planetary system begins with a large cloud of gas and dust - called a molecular cloud - that collapses under its own gravity to form a central star. Leftover material spinning around the star in what is called a protoplanetary disk forms planets. This planetary system was observed by Webb very early in its developmental history. The star, named YSES-1, is about the same mass as the sun. The two planets orbit a long distance from the star, each probably needing thousands of years to complete a single orbit. While the sun is roughly 4.5 billion years old, this star is approximately 16 million years old, a veritable newborn. The researchers were surprised to find that the two neonatal planets observed by Webb appeared to be at different stages of development. The innermost of the two has a mass about 14 times greater than Jupiter and orbits the star at a distance 160 times greater than Earth orbits the sun and more than five times as far as our solar system's outermost planet Neptune. The planet is surrounded by a disk of small-grained dust, a state one might expect in a very early stage of formation when it is still coalescing, or perhaps if there has been a collision of some kind or a moon is in the process of taking shape. Webb spotted water and carbon monoxide in its atmosphere. The outermost planet has a mass about six times greater than that of Jupiter and orbits the star at 320 times the distance of Earth to the sun. Its atmosphere is loaded with silicate clouds, differing from our solar system's gas giants. Webb also detected methane, water, carbon monoxide and carbon dioxide in the atmosphere. It has no disk of material around it. The puzzling combination of traits presented by these two planets in the same system illustrates "the complex landscape that is planet formation and shows how much we truly don't know about how planetary systems came to be, including our own," said astrophysicist Kielan Hoch of the Space Telescope Science Institute in Baltimore, who led the study published this week in the journal Nature. "Theoretically, the planets should be forming around the same time, as planet formation happens fairly quickly, within about one million years," Hoch said. A real mystery is the location where the planets formed, Hoch added, noting that their orbital distance from the host star is greater than would be expected if they formed in the protoplanetary disk. "Furthermore, why one planet still retains material around it and one has distinct silicate clouds remains a big question. Do we expect all giant planets to form the same way and look the same if they formed in the same environment? These are questions we have been investigating for ages to place the formation of our own solar system into context," Hoch said. In addition to amassing a trove of discoveries about the early universe since becoming operational in 2022, Webb has made a major contribution to the study of exoplanets with its observations at near- and mid-infrared wavelengths. "Webb is revealing all sorts of atmospheric physics and chemistry happening in exoplanets that we didn't know before, and is currently challenging every atmospheric model we used pre-Webb," Hoch said.
Yahoo
12-06-2025
- Science
- Yahoo
'Uranus is weird.' Big moons of tilted ice giant hide a magnetic mystery, Hubble telescope reveals
When you buy through links on our articles, Future and its syndication partners may earn a commission. New data from the Hubble Space Telescope suggests that Uranus' largest moons are gathering dust — literally. Uranus, the seventh planet from the sun and home to 28 known moons, is well known for its bizarre tilt. The planet spins almost completely on its side, an oddball orientation that twists its magnetic field into a warped and constantly shifting force, which scientists have long thought would leave visible scars on its moons by bombarding them with charged particles. However, new Hubble Space Telescope observations of Uranus' four largest moons — Ariel, Umbriel, Titania and Oberon — show no clear signs of the expected radiation damage, Christian Soto of the Space Telescope Science Institute in Maryland, who led the analysis, told reporters on Tuesday (June 10) at the 246th American Astronomical Society (AAS) press conference in Alaska. Based on data from NASA's Voyager 2 flyby in 1986 and decades of modeling, scientists expected the trailing hemispheres of Uranus' moons — the sides opposite their direction of travel — to be visibly darkened by radiation. The leading sides, by contrast, were expected to remain relatively brighter. Instead, the researchers found that the two outer moons, Titania and Oberon, are darker on their leading sides, the opposite of what they had predicted. The visible darkening, they say, doesn't come from Uranus' magnetic field at all, but from dust. Hubble's data points to a slow inward drift of dust from Uranus' distant irregular moons, which orbit between 2.5 to 13 million miles (4 to 20 million kilometers) from the planet. These outer moons are constantly bombarded by micrometeorites, which kick up particles that gradually spiral inward over millions of years, Soto said. As Titania and Oberon travel through this diffuse dust cloud, they accumulate the particles mostly on their leading sides. "Think of driving very fast on a highway, and bugs are hitting your windshield — that's what we're seeing here," Soto said during the press briefing. Interestingly, the inner moons Ariel and Umbriel show no significant difference in brightness between their leading and trailing sides — possibly because the drifting dust doesn't reach them, thanks to shielding by Titania and Oberon. "Dust collection — I didn't even expect to get into that hypothesis," Richard Cartwright, a planetary scientist at the Johns Hopkins University's Applied Physics Laboratory in Maryland, said in a statement. "But you know, data always surprise you." As for the role of Uranus' powerful magnetic field, researchers now suspect that its effects might be subtler or more complex than previously thought. It may still be interacting with the moons, but not in a way that creates strong contrasts on their surfaces. RELATED STORIES: — Uranus: Everything you need to know about the coldest planet in the solar system — Are there hidden oceans inside the moons of Uranus? Their wobbles could tell us — A day on Uranus is actually longer than we thought, Hubble Telescope reveals "Uranus is weird, so it's always been uncertain how much the magnetic field actually interacts with its satellites," Cartwright said in the statement. The findings highlight how little we still know about Uranus. Apart from Voyager 2's brief flyby nearly 40 years ago, coincidentally during a rare solar event, no dedicated mission has ever visited the planet. To learn more, Soto's team has scheduled follow-up observations with the James Webb Space Telescope within the next year. Using infrared imaging, Webb will take a closer look at the same moons, potentially confirming whether dust, radiation or a combination of both is shaping their surfaces. "Why do we do this?" Soto said at the briefing. "Well, Uranus is weird — so why not?"
Yahoo
10-06-2025
- Science
- Yahoo
Astronomers left puzzled by high-altitude clouds forming on young planet
Should humans ever venture to a particular planet that circles a sun-like star in the constellation of the fly, they would do well to keep an eye on the weather. The thick slabs of cloud that blot the planet's skies are mostly made from mineral dust, but astronomers suspect there may be iron in them, too, which would rain down on the world below when the clouds break. Astronomers spotted the high-altitude clouds when they trained the James Webb space telescope (JWST) on the young star system, which lies 307 light years away in the deep southern sky. The star, YSES-1, is a newbie by cosmic standards, a mere 1m years old compared with the 4.6bn-year-old sun. The star is circled by two gas giants, both still forming and both larger than Jupiter, the biggest planet in the solar system. Related: Astronomers find signal that gives 'unexpected' insight into early universe Dr Kielan Hoch, an astrophysicist at the Space Telescope Science Institute in Baltimore, Maryland, said the planetary system's youth made it a prime target for astronomers to learn more about the early evolution of planets around faraway stars. 'There's a small handful of multiplanet systems that have been directly imaged,' Hoch said. 'And they are a unique laboratory to test planet formation theories as they formed in the same environment.' 'Both planets are still forming, which is why they are still bright enough for us to detect,' she added. 'The light we are seeing is from their formation as they begin to shrink and condense.' When the team began their observations they were surprised to find both planets in the telescope's field of view, giving them information on two worlds for the price of one. The outer planet, YSES-1c, is the smaller of the two worlds, and about six times the mass of Jupiter. The telescope revealed high-altitude clouds in the planet's atmosphere, but instead of being made from water vapour as on Earth, the clouds consist of magnesium silicate dust grains and perhaps some iron. 'The iron would indeed precipitate out,' Hoch said. The astronomers described the observations as the first direct detection of such clouds on a planet circling a sun-like star. Further data revealed a disc of material made up of trillions of tonnes of dust particles around the larger inner world, YSES-1b, about 14 times the mass of Jupiter. The findings were published in Nature. Hoch said the disc around the inner planet was a 'puzzle for formation theories' since both planets must have formed in the same environment. 'Why did YSES-1b hold on to material around it while YSES-1c did not?' she said. An added mystery is why a 16m-year-old planet still has a disk of material swirling around it. Astronomers' theories of planet formation suggest that any encircling dust should have settled after the first 5m years. 'We wouldn't expect the planets to look so different from one another if they formed in the same protoplanetary disk,' Hoch said. 'JWST is providing an immense amount of data to continue to refine models and improve our understanding.' The $10bn telescope has transformed astronomy since it launched in December 2021 from Europe's Spaceport in French Guiana. The flagship mission has peered back to the first galaxies that lit up the cosmos, spied strange new worlds, and witnessed black holes colliding. It has even spotted tantalising, if controversial, hints of life beyond Earth.