logo
Astronomers left puzzled by high-altitude clouds forming on young planet

Astronomers left puzzled by high-altitude clouds forming on young planet

Yahoo2 days ago

Should humans ever venture to a particular planet that circles a sun-like star in the constellation of the fly, they would do well to keep an eye on the weather.
The thick slabs of cloud that blot the planet's skies are mostly made from mineral dust, but astronomers suspect there may be iron in them, too, which would rain down on the world below when the clouds break.
Astronomers spotted the high-altitude clouds when they trained the James Webb space telescope (JWST) on the young star system, which lies 307 light years away in the deep southern sky.
The star, YSES-1, is a newbie by cosmic standards, a mere 1m years old compared with the 4.6bn-year-old sun. The star is circled by two gas giants, both still forming and both larger than Jupiter, the biggest planet in the solar system.
Related: Astronomers find signal that gives 'unexpected' insight into early universe
Dr Kielan Hoch, an astrophysicist at the Space Telescope Science Institute in Baltimore, Maryland, said the planetary system's youth made it a prime target for astronomers to learn more about the early evolution of planets around faraway stars.
'There's a small handful of multiplanet systems that have been directly imaged,' Hoch said. 'And they are a unique laboratory to test planet formation theories as they formed in the same environment.'
'Both planets are still forming, which is why they are still bright enough for us to detect,' she added. 'The light we are seeing is from their formation as they begin to shrink and condense.'
When the team began their observations they were surprised to find both planets in the telescope's field of view, giving them information on two worlds for the price of one. The outer planet, YSES-1c, is the smaller of the two worlds, and about six times the mass of Jupiter.
The telescope revealed high-altitude clouds in the planet's atmosphere, but instead of being made from water vapour as on Earth, the clouds consist of magnesium silicate dust grains and perhaps some iron. 'The iron would indeed precipitate out,' Hoch said.
The astronomers described the observations as the first direct detection of such clouds on a planet circling a sun-like star. Further data revealed a disc of material made up of trillions of tonnes of dust particles around the larger inner world, YSES-1b, about 14 times the mass of Jupiter. The findings were published in Nature.
Hoch said the disc around the inner planet was a 'puzzle for formation theories' since both planets must have formed in the same environment. 'Why did YSES-1b hold on to material around it while YSES-1c did not?' she said. An added mystery is why a 16m-year-old planet still has a disk of material swirling around it. Astronomers' theories of planet formation suggest that any encircling dust should have settled after the first 5m years.
'We wouldn't expect the planets to look so different from one another if they formed in the same protoplanetary disk,' Hoch said. 'JWST is providing an immense amount of data to continue to refine models and improve our understanding.'
The $10bn telescope has transformed astronomy since it launched in December 2021 from Europe's Spaceport in French Guiana. The flagship mission has peered back to the first galaxies that lit up the cosmos, spied strange new worlds, and witnessed black holes colliding. It has even spotted tantalising, if controversial, hints of life beyond Earth.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

New Tyrannosaur species reshapes T. rex family tree
New Tyrannosaur species reshapes T. rex family tree

Yahoo

time3 hours ago

  • Yahoo

New Tyrannosaur species reshapes T. rex family tree

A newly identified dinosaur species from Mongolia is rewriting the history of the T. rex family tree. Dubbed the 'Dragon Prince' (scientifically named Khankhuuluu mongoliensis), this prehistoric predator lived about 86 million years ago and is believed to be a key ancestor of the famous Tyrannosaurus rex. For decades, fossils of this dinosaur sat largely overlooked in museum collections, misidentified as a known species called Alectrosaurus. But recent re-examination by researchers revealed that the fossils represent a completely new species — one that provides a vital missing link between smaller early tyrannosaurs and the massive apex predators that later dominated Earth. At about 13 feet long and weighing about 1,650 pounds, the Dragon Prince was much smaller than later tyrannosaurs like T. rex, which could grow up to 41 feet long and weigh more than 23,000 pounds. It had a smaller head and longer arms compared to its gigantic descendants, meaning it may have occupied an in-between evolutionary phase. Scientists say the discovery fills a crucial gap in understanding how tyrannosaurs evolved from modest-sized hunters to colossal rulers of their ecosystems. Paleontologists believe the Dragon Prince primarily hunted prey smaller than itself, unlike later giants that tackled enormous herbivores. Beyond its size and anatomy, experts say the find offers fresh insights into tyrannosaur migration patterns. Research shows that around 85 million years ago, a species closely related to K. mongoliensis migrated from Asia to North America across a land bridge near today's Bering Strait. This migration likely gave rise to the first true tyrannosaurs in North America, which went on to become dominant predators of the Late Cretaceous period. Later migrations back and forth between Asia and North America helped shape tyrannosaur diversity, producing both massive species like Tarbosaurus bataar and smaller, slimmer ones like Qianzhousaurus sinensis, nicknamed 'Pinocchio rex.' About 68 million years ago, one giant tyrannosaur species likely migrated back to North America and evolved into T. rex. This discovery, published in Nature, highlights how migration events fueled tyrannosaur evolution and offers a fascinating glimpse into the complex family tree of these iconic dinosaurs — the princes before they became kings. Copyright 2025 Nexstar Media, Inc. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed.

James Webb Space Telescope sees 1st exoplanet raining sand alongside 'sandcastle' partner world
James Webb Space Telescope sees 1st exoplanet raining sand alongside 'sandcastle' partner world

Yahoo

time4 hours ago

  • Yahoo

James Webb Space Telescope sees 1st exoplanet raining sand alongside 'sandcastle' partner world

When you buy through links on our articles, Future and its syndication partners may earn a commission. Noted sand-hater Anakin Skywalker may want to cross the planetary system of YSES-1 off his list of potential summer vacation locations. Using the James Webb Space Telescope (JWST), astronomers have discovered a planetary system orbiting a youthful star located 300 light-years away. The system's two planets, YSES-1 b and YSES-1 c, are packed with coarse, rough, and frankly irritating silica material (we get you, Anakin, it does get everywhere). Astronomers say this discovery around a star that is just 16.7 million years old could hint at how the planets and moons of our 4.6 billion-year-old solar system took shape. As both planets are gas giants, they could offer astronomers an opportunity to study the real-time evolution of planets like Jupiter and Saturn. "Observing silicate clouds, which are essentially sand clouds, in the atmospheres of extrasolar planets is important because it helps us better understand how atmospheric processes work and how planets form, a topic that is still under discussion since there is no agreement on the different models," team member Valentina D'Orazi of the National Institute for Astrophysics (INAF) said in a statement. "The discovery of these sand clouds, which remain aloft thanks to a cycle of sublimation and condensation similar to that of water on Earth, reveals complex mechanisms of transport and formation in the atmosphere. "This allows us to improve our models of climate and chemical processes in environments very different from those of the solar system, thus expanding our knowledge of these systems." One of these extrasolar planets, or "exoplanets," YSES-1 c, has a mass around 14 times the mass of Jupiter. On YSES-1 c, this silica matter is located in clouds in its atmosphere, which gives it a reddish hue and creates sandy rains that fall inward towards its core. We guess that the future Darth Vader didn't build too many sandcastles in his youth, but that process is analogous to the formation of sandy matter that YSES-1 b is undergoing. Already possessing a mass around six times that of Jupiter, the still-forming sandcastle planet YSES-1 b is surrounded by a flattened cloud or "circumplanetary disk" that is supplying it with building materials, including silicates. Not only is this the first direct observation of silica clouds (specifically iron-rich pyroxene or a combination of bridgmanite and forsterite) high in the atmosphere of an exoplanet, but it is also the first time silicates have been detected in a circumplanetary disk. The JWST was able to make such detailed direct observations of both planets thanks to the great distances at which they orbit their parent star, which is equivalent to between 5 and 10 times the distance between the sun and its most distant planet, the ice giant Neptune. Though this technique is still restricted to a small number of planets beyond the solar system, this research exemplifies the capability of the JWST to provide high-quality spectral data for exoplanets. This opens the possibility of studying both the atmospheres and circumplanetary environments of exoplanets in far greater detail. Related Stories: — Scientists discover super-Earth exoplanets are more common in the universe than we thought — Does exoplanet K2-18b host alien life or not? Here's why the debate continues — A hidden 'super-Earth' exoplanet is dipping in and out of its habitable zone "By studying these planets, we can better understand how planets form in general, a bit like peering into the past of our solar system," added D'Orazi. "The results support the idea that cloud compositions in young exoplanets and circumplanetary disks play a crucial role in determining atmospheric chemical composition. "Furthermore, this study highlights the need for detailed atmospheric models to interpret the high-quality observational data obtained with telescopes such as JWST." The team's results were published on Tuesday (June 10) in the journal Nature, the same day as they were presented at the 246th meeting of the American Astronomical Society in Anchorage, Alaska.

'Uranus is weird.' Big moons of tilted ice giant hide a magnetic mystery, Hubble telescope reveals
'Uranus is weird.' Big moons of tilted ice giant hide a magnetic mystery, Hubble telescope reveals

Yahoo

time4 hours ago

  • Yahoo

'Uranus is weird.' Big moons of tilted ice giant hide a magnetic mystery, Hubble telescope reveals

When you buy through links on our articles, Future and its syndication partners may earn a commission. New data from the Hubble Space Telescope suggests that Uranus' largest moons are gathering dust — literally. Uranus, the seventh planet from the sun and home to 28 known moons, is well known for its bizarre tilt. The planet spins almost completely on its side, an oddball orientation that twists its magnetic field into a warped and constantly shifting force, which scientists have long thought would leave visible scars on its moons by bombarding them with charged particles. However, new Hubble Space Telescope observations of Uranus' four largest moons — Ariel, Umbriel, Titania and Oberon — show no clear signs of the expected radiation damage, Christian Soto of the Space Telescope Science Institute in Maryland, who led the analysis, told reporters on Tuesday (June 10) at the 246th American Astronomical Society (AAS) press conference in Alaska. Based on data from NASA's Voyager 2 flyby in 1986 and decades of modeling, scientists expected the trailing hemispheres of Uranus' moons — the sides opposite their direction of travel — to be visibly darkened by radiation. The leading sides, by contrast, were expected to remain relatively brighter. Instead, the researchers found that the two outer moons, Titania and Oberon, are darker on their leading sides, the opposite of what they had predicted. The visible darkening, they say, doesn't come from Uranus' magnetic field at all, but from dust. Hubble's data points to a slow inward drift of dust from Uranus' distant irregular moons, which orbit between 2.5 to 13 million miles (4 to 20 million kilometers) from the planet. These outer moons are constantly bombarded by micrometeorites, which kick up particles that gradually spiral inward over millions of years, Soto said. As Titania and Oberon travel through this diffuse dust cloud, they accumulate the particles mostly on their leading sides. "Think of driving very fast on a highway, and bugs are hitting your windshield — that's what we're seeing here," Soto said during the press briefing. Interestingly, the inner moons Ariel and Umbriel show no significant difference in brightness between their leading and trailing sides — possibly because the drifting dust doesn't reach them, thanks to shielding by Titania and Oberon. "Dust collection — I didn't even expect to get into that hypothesis," Richard Cartwright, a planetary scientist at the Johns Hopkins University's Applied Physics Laboratory in Maryland, said in a statement. "But you know, data always surprise you." As for the role of Uranus' powerful magnetic field, researchers now suspect that its effects might be subtler or more complex than previously thought. It may still be interacting with the moons, but not in a way that creates strong contrasts on their surfaces. RELATED STORIES: — Uranus: Everything you need to know about the coldest planet in the solar system — Are there hidden oceans inside the moons of Uranus? Their wobbles could tell us — A day on Uranus is actually longer than we thought, Hubble Telescope reveals "Uranus is weird, so it's always been uncertain how much the magnetic field actually interacts with its satellites," Cartwright said in the statement. The findings highlight how little we still know about Uranus. Apart from Voyager 2's brief flyby nearly 40 years ago, coincidentally during a rare solar event, no dedicated mission has ever visited the planet. To learn more, Soto's team has scheduled follow-up observations with the James Webb Space Telescope within the next year. Using infrared imaging, Webb will take a closer look at the same moons, potentially confirming whether dust, radiation or a combination of both is shaping their surfaces. "Why do we do this?" Soto said at the briefing. "Well, Uranus is weird — so why not?"

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store