Latest news with #YSES-1b
Yahoo
a day ago
- Science
- Yahoo
James Webb Space Telescope sees 1st exoplanet raining sand alongside 'sandcastle' partner world
When you buy through links on our articles, Future and its syndication partners may earn a commission. Noted sand-hater Anakin Skywalker may want to cross the planetary system of YSES-1 off his list of potential summer vacation locations. Using the James Webb Space Telescope (JWST), astronomers have discovered a planetary system orbiting a youthful star located 300 light-years away. The system's two planets, YSES-1 b and YSES-1 c, are packed with coarse, rough, and frankly irritating silica material (we get you, Anakin, it does get everywhere). Astronomers say this discovery around a star that is just 16.7 million years old could hint at how the planets and moons of our 4.6 billion-year-old solar system took shape. As both planets are gas giants, they could offer astronomers an opportunity to study the real-time evolution of planets like Jupiter and Saturn. "Observing silicate clouds, which are essentially sand clouds, in the atmospheres of extrasolar planets is important because it helps us better understand how atmospheric processes work and how planets form, a topic that is still under discussion since there is no agreement on the different models," team member Valentina D'Orazi of the National Institute for Astrophysics (INAF) said in a statement. "The discovery of these sand clouds, which remain aloft thanks to a cycle of sublimation and condensation similar to that of water on Earth, reveals complex mechanisms of transport and formation in the atmosphere. "This allows us to improve our models of climate and chemical processes in environments very different from those of the solar system, thus expanding our knowledge of these systems." One of these extrasolar planets, or "exoplanets," YSES-1 c, has a mass around 14 times the mass of Jupiter. On YSES-1 c, this silica matter is located in clouds in its atmosphere, which gives it a reddish hue and creates sandy rains that fall inward towards its core. We guess that the future Darth Vader didn't build too many sandcastles in his youth, but that process is analogous to the formation of sandy matter that YSES-1 b is undergoing. Already possessing a mass around six times that of Jupiter, the still-forming sandcastle planet YSES-1 b is surrounded by a flattened cloud or "circumplanetary disk" that is supplying it with building materials, including silicates. Not only is this the first direct observation of silica clouds (specifically iron-rich pyroxene or a combination of bridgmanite and forsterite) high in the atmosphere of an exoplanet, but it is also the first time silicates have been detected in a circumplanetary disk. The JWST was able to make such detailed direct observations of both planets thanks to the great distances at which they orbit their parent star, which is equivalent to between 5 and 10 times the distance between the sun and its most distant planet, the ice giant Neptune. Though this technique is still restricted to a small number of planets beyond the solar system, this research exemplifies the capability of the JWST to provide high-quality spectral data for exoplanets. This opens the possibility of studying both the atmospheres and circumplanetary environments of exoplanets in far greater detail. Related Stories: — Scientists discover super-Earth exoplanets are more common in the universe than we thought — Does exoplanet K2-18b host alien life or not? Here's why the debate continues — A hidden 'super-Earth' exoplanet is dipping in and out of its habitable zone "By studying these planets, we can better understand how planets form in general, a bit like peering into the past of our solar system," added D'Orazi. "The results support the idea that cloud compositions in young exoplanets and circumplanetary disks play a crucial role in determining atmospheric chemical composition. "Furthermore, this study highlights the need for detailed atmospheric models to interpret the high-quality observational data obtained with telescopes such as JWST." The team's results were published on Tuesday (June 10) in the journal Nature, the same day as they were presented at the 246th meeting of the American Astronomical Society in Anchorage, Alaska.


The Print
a day ago
- Science
- The Print
Study of young exoplanets reveals new insights into their formation
'When we looked at the smaller, farther-out companion (planet), known as YSES 1-c, we found the tell-tale signature of silicate clouds in the mid-infrared (using the James Webb Space Telescope),' co-author Evert Nasedkin, a postdoctoral fellow in Trinity College Dublin's school of physics, Ireland, said. In one of the planets, known to orbit a sun-like star 'YSES-1', researchers detected clouds containing sand-like particles — or silicate clouds — the strongest one seen on an exoplanet yet, they said. New Delhi, Jun 11 (PTI) Astrophysicists have gained new insights into how planets outside the solar system, or 'exoplanets', form by studying two 'young' giant planets, 'still hot from their formation', a new study says. The author added this is the 'strongest silicate absorption feature observed in an exoplanet yet' and related to its youth. 'We believe this is linked to the relative youth of the planets: younger planets are slightly larger in radius, and this extended atmosphere may allow the cloud to absorb more of the light emitted by the planet,' Nasedkin said. In the study published in the journal Nature, the authors wrote, 'With two exoplanets around a solar-type star, the YSES-1 system is an ideal laboratory for studying this early phase of exoplanet evolution.' The findings help understand how the 'YSES-1' solar system formed, offering further insight into the origins of our solar system, the researchers said. 'Directly imaged exoplanets — planets outside our own Solar System — are the only exoplanets that we can truly take photos of,' Nasedkin said. 'These exoplanets are typically still young enough that they are still hot from their formation, and it is this warmth, seen in the thermal infrared, that we as astronomers observe,' the author said. Studying the other planet 'YSES-1b', the team found that the entire planetary system is young, at 16.7 million years old, yet is too old to find signs of the planet-forming disk — a mixture of gas and dust rotating a star and from which planets can form. But around YSES-1b, the team observed a disk around the planet itself, thought to feed material onto the planet and serve as the birthplace of moons — similar to those seen around Jupiter, they said. Only three other such disks have been identified to date, both around objects significantly younger than YSES-1b, raising new questions as to how this disk could be so long-lived, the researchers said. PTI KRS KRS MPL MPL This report is auto-generated from PTI news service. ThePrint holds no responsibility for its content.
Yahoo
2 days ago
- Science
- Yahoo
Astronomers left puzzled by high-altitude clouds forming on young planet
Should humans ever venture to a particular planet that circles a sun-like star in the constellation of the fly, they would do well to keep an eye on the weather. The thick slabs of cloud that blot the planet's skies are mostly made from mineral dust, but astronomers suspect there may be iron in them, too, which would rain down on the world below when the clouds break. Astronomers spotted the high-altitude clouds when they trained the James Webb space telescope (JWST) on the young star system, which lies 307 light years away in the deep southern sky. The star, YSES-1, is a newbie by cosmic standards, a mere 1m years old compared with the 4.6bn-year-old sun. The star is circled by two gas giants, both still forming and both larger than Jupiter, the biggest planet in the solar system. Related: Astronomers find signal that gives 'unexpected' insight into early universe Dr Kielan Hoch, an astrophysicist at the Space Telescope Science Institute in Baltimore, Maryland, said the planetary system's youth made it a prime target for astronomers to learn more about the early evolution of planets around faraway stars. 'There's a small handful of multiplanet systems that have been directly imaged,' Hoch said. 'And they are a unique laboratory to test planet formation theories as they formed in the same environment.' 'Both planets are still forming, which is why they are still bright enough for us to detect,' she added. 'The light we are seeing is from their formation as they begin to shrink and condense.' When the team began their observations they were surprised to find both planets in the telescope's field of view, giving them information on two worlds for the price of one. The outer planet, YSES-1c, is the smaller of the two worlds, and about six times the mass of Jupiter. The telescope revealed high-altitude clouds in the planet's atmosphere, but instead of being made from water vapour as on Earth, the clouds consist of magnesium silicate dust grains and perhaps some iron. 'The iron would indeed precipitate out,' Hoch said. The astronomers described the observations as the first direct detection of such clouds on a planet circling a sun-like star. Further data revealed a disc of material made up of trillions of tonnes of dust particles around the larger inner world, YSES-1b, about 14 times the mass of Jupiter. The findings were published in Nature. Hoch said the disc around the inner planet was a 'puzzle for formation theories' since both planets must have formed in the same environment. 'Why did YSES-1b hold on to material around it while YSES-1c did not?' she said. An added mystery is why a 16m-year-old planet still has a disk of material swirling around it. Astronomers' theories of planet formation suggest that any encircling dust should have settled after the first 5m years. 'We wouldn't expect the planets to look so different from one another if they formed in the same protoplanetary disk,' Hoch said. 'JWST is providing an immense amount of data to continue to refine models and improve our understanding.' The $10bn telescope has transformed astronomy since it launched in December 2021 from Europe's Spaceport in French Guiana. The flagship mission has peered back to the first galaxies that lit up the cosmos, spied strange new worlds, and witnessed black holes colliding. It has even spotted tantalising, if controversial, hints of life beyond Earth.


Newsweek
2 days ago
- Science
- Newsweek
Iron May Rain From Sand Clouds on Newly-Discovered Planet
Based on facts, either observed and verified firsthand by the reporter, or reported and verified from knowledgeable sources. Newsweek AI is in beta. Translations may contain inaccuracies—please refer to the original content. Dusty clouds made of sand—that may rain iron—blanket a giant planet orbiting a young, sun-like star just 310 light-years from Earth, the James Webb Space Telescope has revealed. The discovery was made by an international team of astronomers led from the Space Telescope Science Institute (STScI) in Baltimore Maryland. Around the star—dubbed "YSES-1"—the researchers also directly observed another giant exoplanet around which is a potentially multiple-moon-forming circumplanetary disk. "This work highlights the incredible abilities of JWST to characterize exoplanet atmospheres," said paper author and astronomer Evert Nasedkin of Trinity College Dublin, Ireland, in a statement. "With only a handful of exoplanets that can be directly imaged, the YSES-1 system offers unique insights into the atmospheric physics and formation processes of these distant giants." An artist's impression of the planets of the star system YSES-1. An artist's impression of the planets of the star system YSES-1. Ellis Bogat Using Webb's Near InfraRed Spectrograph (NIRSpec), the team were able to capture the two planets—which are both several times larger than Jupiter, and orbit out far from their host star—in a single exposure. This has provided what lead author and STScI physicist Kielan Hoch calls "the most detailed dataset of a multi-planet system to date." Nasedkin added: "Directly imaged exoplanets—planets outside our own solar system—are the only exoplanets that we can truly take photos of. "These exoplanets are typically still young enough that they are still hot from their formation—and it is this warmth, seen in the thermal infrared, that we as astronomers observe." By recording the light coming from the two exoplanets, the team were able to unpick the signals that reveal the chemical makeup of the gas giant's atmospheres. "When we looked at the smaller, farther-out companion—known as YSES-1c—we found the tell-tale signature of silicate clouds in the mid-infrared," said Nasedkin. "Essentially made of sand-like particles, this is the strongest silicate absorption feature observed in an exoplanet yet." The team's analysis also indicated that the clouds contain iron, which may fall from the clouds down into the planet as rain. "We believe this is linked to the relative youth of the planets: younger planets are slightly larger in radius, and this extended atmosphere may allow the cloud to absorb more of the light emitted by the planet." The circumplanetary disk is the inner planet, YSES-1b, meanwhile, presents something of a mystery. Only three other such disks have been identified to date, but they are all around objects that are significantly younger than YSES-1b—leading to questions as to how the newly discovered disk could be so long-lived. And that is far from the only puzzle that will need to be solved. "The YSES-1 system planets are also too widely separated to be explained through current formation theories, so the additional discoveries of distinct silicate clouds around YSES-1c and small hot dusty material around YSES-1b leads to more mysteries and complexities for determining how planets form and evolve," Hoch concluded. Do you have a tip on a science story that Newsweek should be covering? Do you have a question about exoplanets? Let us know via science@ Reference Hoch, K. K. W., Rowland, M., Petrus, S., Nasedkin, E., Ingebretsen, C., Kammerer, J., Perrin, M., D'Orazi, V., Balmer, W. O., Barman, T., Bonnefoy, M., Chauvin, G., Chen, C., De Rosa, R. J., Girard, J., Gonzales, E., Kenworthy, M., Konopacky, Q. M., Macintosh, B., Moran, S. E., Morley, C. V., Palma-Bifani, P., Pueyo, L., Ren, B., Rickman, E., Ruffio, J.-B., Theissen, C. A., Ward-Duong, K., & Zhang, Y. (2025). Silicate clouds and a circumplanetary disk in the YSES-1 exoplanet system. Nature.
Yahoo
3 days ago
- Science
- Yahoo
Stunning Direct Images of Alien Worlds Are Detailed Enough to Reveal Clouds
New images from the JWST are about as close as we've ever come to seeing the sky of an alien world outside the Solar System. Direct images of a gas giant exoplanet orbiting a star called YSES-1 have revealed clouds of fine sand drifting high up in its atmosphere. What's more, similar observations of a neighboring world suggest it is surrounded by a large, swirling disk rich with olivine, a mineral that can form the gemstone peridot here on Earth. "Everything is exciting about these two results," astrophysicist and lead author Kielan Hoch of the Space Telescope Science Institute told ScienceAlert. "The observations were novel as we could observe 'two for the price of one' with JWST NIRSpec, and discovering two major planetary features on each object." Planets outside our Solar System are elusive beasts. They are extremely difficult to see directly; they are very far away, and small and dim, obscured by the blazing light of the stars they orbit. Of the nearly 6,000 confirmed to date, the vast, vast majority have only been detected and measured indirectly – that is, based on changes their presence evokes in the light of their host stars. Only around 80 exoplanets have been seen directly. There's a lot you can tell about a planet from the way it tugs on its surrounds or eclipses its star. But direct observations of the light it emits can reveal far more. Even so, it takes a powerful instrument to extract a signal from the faint light of even the closest exoplanets. The YSES-1 system is only 306 light-years away and contains two known planets; YSES-1b, which is closer to the star at a distance of 160 astronomical units, and YSES-1c, at 320 astronomical units. YSES-1c is around six times the mass of Jupiter, while YSES-1b is the larger of the two at around 14 times Jupiter's mass, putting it right on the mass boundary between planets and brown dwarfs. Prior direct observations of this system suggested that the world may have interesting atmospheric properties, but the instruments involved lacked the power to detect them. Cue JWST. "With the NIRSpec instrument on JWST we are able to get images of the planets at thousands of wavelengths at once. The images can be reduced to produce spectra, which is thermal light coming from the planet itself," Hoch explained. "As the light passes through the atmosphere of the exoplanet, some of the light will get absorbed by molecules and cause dips in brightness of the planet. This is how we are able to tell what the atmospheres are made of!" The results? The most detailed spectral dataset of a multi-planet system compiled to date. Both exoplanets, the researchers found, showed evidence of water, carbon monoxide, carbon dioxide, and methane in their atmospheres – all of which are relatively common atmospheric components. It's where they diverge that things start to get interesting. "For YSES-1c, we see lots of molecular features from water, carbon dioxide and carbon monoxide, and methane. At longer wavelengths, we see absorption caused by silicate particles, which has a different spectral shape," Hoch said. "We use laboratory data of different particles and structures to model which silicates fit the data best and determine other properties of those particles. Our models show that there could be small silicate particles high up in the atmosphere that can contain small amounts of iron that rains out of the clouds. However, our models also show that a mixture of only silicates can also fit the data." No such spectra feature was observed for YSES-1b, but something else emerged: the signature of small grains of olivine in a disk around the exoplanet. Olivine is a mineral that forms in volcanic conditions here on Earth; particularly fine gemstone-quality examples form peridot. Olivine is also found in meteorites, so it seems the mineral can form easily in molten rock situations. However, it shouldn't be seen in dust form around YSES-1b. Dust settling is an efficient process expected to take a maximum of about 5 million years, Hoch explained. The YSES-1 system is estimated to be around 16.7 million years old. It's possible that the olivine-rich dust is debris from a collision between objects orbiting near YSES-1b – which means the observations came at a very lucky point in cosmic time. Both sets of results are spectacular. "We hoped to detect clouds in YSES-1c's atmosphere as its spectral type is theorized to have a cloudy atmosphere. But, when we saw the feature, it was wildly different from other silicate features seen in brown dwarfs," Hoch said. "We did NOT expect to see evidence for a disk around the inner planet YSES-1b. That was certainly a surprise." All the best astrophysical observations raise at least as many questions as they answer. YSES-1 is no exception. The disk around YSES-1b is one big one. We also don't know enough about exoplanetary atmospheres, or how long these objects take to form. Ongoing work to directly study the atmospheres of other exoplanets will help fill in some of these gaps in our knowledge. "I also am excited about the result as this research was led by early career scientists. I was a graduate student when I proposed to use JWST to image this planetary system, and JWST had not launched yet and was not designed for looking at exoplanets," Hoch said. "The first five authors of the manuscript range from first year graduate student to postdoctoral fellow. I believe this highlights the need to support early career scientists, and that is a result most exciting for me." The research has been published in Nature. Stunning 'Solar Curtains' Phenomenon Revealed on The Sun in New Images The Sun's Fury Is Making SpaceX Satellites Plummet From The Sky Astronomers Just Discovered The Biggest Explosions Since The Big Bang