James Webb telescope unveils largest-ever map of the universe, stretching from present day to the dawn of time
Scientists have unveiled the largest map of the universe ever created. Stretching across a tiny sliver of space and almost all cosmic time, it includes almost 800,000 galaxies imaged across the universe. Some are so far away that they appear as they existed in the infant universe, about 13 billion years ago.
The map, released Thursday (June 5) by scientists at the Cosmic Evolution Survey collaboration , covers a 0.54-degree-squared arc of the sky, or about three times as much space as the moon takes up when viewed from Earth.
To collect the data for the map, the James Webb Space Telescope (JWST) spent 255 hours observing a region of space nicknamed the COSMOS field. This patch of sky has very few stars, gas clouds or other features blocking our view of the deep universe, so scientists have been surveying it with telescopes across as many wavelengths of light as possible.
JWST's observations of the COSMOS field have given us an incredibly detailed view of the universe going back as far as 13.5 billion years.
Because the universe has been expanding, visible light that left its source at the other side of the universe gets stretched out, becoming infrared light. This is why JWST was designed to be an extremely sensitive infrared telescope: to detect these faint, stretched-out signals from the beginning of time that we couldn't see with other telescopes. It's already reshaping our understanding of how the universe formed.
RELATED STORIES
—Catastrophic collision between Milky Way and Andromeda galaxies may not happen after all, new study hints
—Universe may revolve once every 500 billion years — and that could solve a problem that threatened to break cosmology
—Scientists discover smallest galaxy ever seen: 'It's like having a perfectly functional human being that's the size of a grain of rice'
"Since the telescope turned on we've been wondering 'Are these JWST datasets breaking the cosmological model?" Caitlin Casey, a professor of physics at the University of California, Santa Barbara and co-lead for the COSMOS project, said in a statement. "The big surprise is that with JWST, we see roughly 10 times more galaxies than expected at these incredible distances. We're also seeing supermassive black holes that are not even visible with Hubble."
The raw data from the COSMOS field observations was made publicly available just after it was collected by JWST, but it wasn't easily accessible. Raw data from telescopes like JWST needs to be processed by people with the right technical knowledge and access to powerful computers.
The COSMOS collaboration spent two years creating the map from JWST's raw data to make it more accessible for amateur astronomers, undergraduate researchers and the general public to peer into the heart of the universe. You can see it for yourself using COSMOS' interactive map viewer.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
an hour ago
- Yahoo
A 'blood moon' is on its way, but you'll need to travel to see it
Another blood moon is coming in 2025, but you'll only see it if you're traveling internationally this fall. A total lunar eclipse will occur Sept. 7, though it won't be visible in New Jersey skies — or even in the U.S., according to Prime viewing is expected in Asia, east Africa and western Australia, along with a chance to glimpse the eclipse in Europe, eastern Australia and New Zealand, the BBC Sky at Night Magazine and said. Here's what to know about the upcoming eclipse. When is the total lunar eclipse in September 2025? The total lunar eclipse will take place Sept. 7, 2025, according to What is a total lunar eclipse? A total lunar eclipse is when the sun, Earth and moon align so the moon is covered by the Earth's shadow, or umbra, NASA said. Where will the total lunar eclipse be visible? The total lunar eclipse will be visible across parts of Europe, Asia, Africa, Australia and New Zealand, according to the BBC Sky at Night Magazine and Can you watch the eclipse from New Jersey? The total lunar eclipse won't be visible in New Jersey, but you can watch it online. If you'd like to follow the eclipse, check out Time and Date's online livestream on Sept 7. Why does the moon appear red during a total lunar eclipse? You can expect the moon to take on a dramatic shade of red or orange in the night sky during the total lunar eclipse, leading it to be known as a "blood moon." That's because of how sunlight strikes the moon's surface after passing through the atmosphere, NASA said. As the moon is covered by the inner part of Earth's shadow during the eclipse, sunlight not blocked by Earth is filtered through a thick slice of Earth's atmosphere before reaching the moon's surface, NASA explained. Colors with shorter wavelengths, such as blues and violets, scatter more easily than colors with longer wavelengths, which include red and orange. When is the next total lunar eclipse? The next total lunar eclipse visible in the Americas will occur March 3, 2026, NASA said. A second, partial, eclipse visible in the Americas takes place in August 2026. August 2026 also will feature a total solar eclipse visible in Greenland, Iceland, Spain, Russia, and a small area of Portugal, while a partial eclipse will be visible in Europe, Africa, North America, the Atlantic Ocean, Arctic Ocean, and Pacific Ocean. Contact Jenna Prestininzi: jprestininzi@ This article originally appeared on Cherry Hill Courier-Post: Where to view 'Blood Moon' total lunar eclipse in September Solve the daily Crossword
Yahoo
2 hours ago
- Yahoo
Earliest Black Hole Ever Confirmed Could Explain Mysterious Red Dots
Astronomers have confirmed the earliest, most distant black hole yet – and it's surprisingly monstrous for its time. Residing in a galaxy called CAPERS-LRD-z9, it was already approximately 300 million times the mass of the Sun just 500 million years after the Big Bang, when the baby Universe was just 3 percent of its current age. Additionally, this discovery sheds literal light on an ancient, mysterious class of celestial objects called Little Red Dots (LRDs), which are perplexingly bright, small, red objects in the early Universe. They appear around 600 million years after the Big Bang then start disappearing less than a billion years later. LRDs have only recently been revealed by JWST's unprecedented infrared ability to explore Cosmic Dawn, the universe's earliest epochs. These are also the Universe's reddest epochs, as the light reaching JWST has been stretched to ever-redder wavelengths on its long journey through the expanding fabric of spacetime. Related: The newly confirmed supermassive black hole at the heart of CAPERS-LRD-z9 is known as an active galactic nucleus (AGN), the bright, rapidly feeding black hole at the center of a galaxy. It appears red because it's enveloped in a glowing cocoon of gas and dust, which may make it a science-fiction-sounding "black hole star." The gravity of this supermassive black hole is whipping the gas around it to mind-boggling speeds of around 3,000 kilometers (1,864 miles) per second, or 1 percent the speed of light. These gassy winds are what help astronomers reveal the presence of black holes via spectroscopy. "There aren't many other things that create this signature," explains lead author Anthony Taylor, astrophysicist at the University of Texas at Austin. Spectroscopy splits incoming light into its wavelengths to yield a spectrum that reveals information about an object. In this case, the light waves from the gas around the black hole gets stretched and turns redder when it moves away from an observer. Conversely, light becomes compressed and bluer when it's moving toward an observer. These changes reveal an object's velocity. Importantly, the spectroscopic confirmation of CAPERS-LRD-z9 supports the idea that LRDs contain supermassive black holes, with "supermassive" being an understatement: some reach 10 million solar masses within their first billion years. For comparison, the supermassive black hole at the core of the Milky Way is about 4 million solar masses. The black holes at the heart of LRDs may not just be supermassive, but "overmassive," with mass ratios approaching 10 percent to 100 percent of their host galaxy's stellar mass. Specifically, at up to around 300 million solar masses, the supermassive black hole in CAPERS-LRD-z9 has the equivalent of about half the mass of all the stars in its galaxy. By contrast, more local galaxies may have central black holes that are only about 0.1 percent of their stellar mass. For added size perspective, CAPERS-LRD-z9 is so compact that not even JWST can resolve it. It seems to be, at most, 1,140 light-years wide – in the realm of the dwarf galaxies that orbit the Milky Way. The researchers say that there are two ways for a black hole to grow so massive within just 500 million years of cosmic time. Both start with a big, heavy "seed" black hole growing at different rates. If it's growing at the theoretical upper limit of black hole growth, known as the Eddington rate, the seed might have started with around 10,000 solar masses. Or, it could have started off much smaller, at just 100 solar masses. That seed would have to grow even faster, at the super-Eddington rate, force-fed by gravity and the thick, dense envelope of gas around it. The seeds themselves may originate as primordial black holes produced when the Big Bang, well, banged. They may also form from the collapse of Population III stars (the elusive first stars to illuminate the cosmos), from "runaway collisions" in dense star clusters, or from the direct collapse of immense, primordial gas clouds. Overall, it's difficult to peer much farther in spacetime: "When looking for black holes, this is about as far back as you can practically go. We're really pushing the boundaries of what current technology can detect," adds Taylor. Finally, this research adds evidence that LRDs were an ephemeral phenomena in the early universe, and potentially an initial step in galactic evolution that may have birthed the Milky Way itself. This research is published in the Astrophysical Journal Letters. Related News Supermassive Black Hole Caught in The Act of Switching on Star Trying to Swallow a Black Hole May Have Triggered a New Type of Supernova Interstellar Object 3I/ATLAS Seen in Stunning New Hubble Image Solve the daily Crossword
Yahoo
2 hours ago
- Yahoo
Our Closest Sun-Like Star May Host a World Where Life Could Thrive
There may be a habitable world at the Sun's closest solar twin. In the complex space inhabited by the Alpha Centauri triple star system, JWST has just discerned the presence of a giant exoplanet orbiting Alpha Centauri A, the most Sun-like of the three stars. Moreover, that exoplanet is in the star's habitable zone – the perfect distance from the star for liquid water to pool. But wait – there's more. Evidence of the prospective world, which is tentatively known as Alpha Centauri Ab, was discovered using direct imaging in what could be a significant breakthrough for exoplanet science. Related: "If confirmed, the potential planet seen in the Webb image of Alpha Centauri A would mark a new milestone for exoplanet imaging efforts," says astrophysicist Aniket Sanghi of the California Institute of Technology. "Of all the directly imaged planets, this would be the closest to its star seen so far. It's also the most similar in temperature and age to the giant planets in our Solar System, and nearest to our home, Earth." The Alpha Centauri system is located just 4 light-years away, a triple system made up of the binary pair Alpha Centauri A and Alpha Centauri B, orbited at a greater distance by the red dwarf star Proxima Centauri. Other exoplanets are already known in the system. Three have been found orbiting Proxima Centauri, including one within the star's habitable zone. But the conditions around red dwarf stars – which tend towards the tempestuous – may be less hospitable than those around stars like the Sun. The detection of worlds in the central binary has been more difficult to accomplish. "With this system being so close to us, any exoplanets found would offer our best opportunity to collect data on planetary systems other than our own," says astronomer Charles Beichman, director of the NASA Exoplanet Science Institute at Caltech. "Yet, these are incredibly challenging observations to make, even with the world's most powerful space telescope, because these stars are so bright, close, and move across the sky quickly." To date, Alpha Centauri B remains without a known world. However, glimmers of something have been spotted in orbit around Alpha Centauri A, the brightest of the three stars and belonging to the same G-type class as the Sun. In 2021, a team of astronomers led by Kevin Wagner of the University of Arizona announced a tentative detection of an exoplanet in the habitable zone of Alpha Centauri A, identified using direct imaging. Most exoplanets are found using indirect methods, such as looking for regular dips in starlight, blocked by the orbiting exoplanet, or changes in starlight associated with the gravitational effect of the exoplanet's presence. Sanghi, Beichman, and their colleagues used JWST to look for further evidence of this world, taking their first observations in August 2024, using a coronagraph to mask the light from Alpha Centauri A. After subtracting the light from Alpha Centauri B, their results showed a faint point source, at around twice the distance from Alpha Centauri as Earth is from the Sun. But follow-up observations conducted in February and April of 2025 revealed no such object. "We are faced with the case of a disappearing planet!" Sanghi explains. "To investigate this mystery, we used computer models to simulate millions of potential orbits, incorporating the knowledge gained when we saw the planet, as well as when we did not." These simulations also included the sighting of Wagner and his team. In about half the simulations, the exoplanet was too close to the star to be detected, its presence drowned out by all the bright light – supporting the case for Alpha Centauri Ab. This world, the researchers determined, would have a radius of around 1 to 1.1 Jupiters, a mass between 90 and 150 Earths, comparable to Saturn's 95-Earth mass, and orbit at about twice the Earth-Sun distance, squarely in the habitable zone. This set of properties describes a world that would have to be a gas giant, which places its potential habitability into question. However, gas giants in the Solar System are lousy with moons that could have habitable conditions – so the nature of the exoplanet doesn't rule out life around Alpha Centauri A. However, more work needs to be done to confirm the existence of Alpha Centauri Ab, and figure out how the heck it even formed in the complex gravitational environment of the Alpha Centauri system. "Its very existence in a system of two closely separated stars would challenge our understanding of how planets form, survive, and evolve in chaotic environments," Sanghi says. The finding is detailed in two papers in The Astrophysical Journal Letters. They can be found here and here. Related News JWST Delivers Bad News About Life on TRAPPIST-1 Planet Record US$5.3M Sale of Largest Mars Rock Sparks Global Dispute Earliest Black Hole Ever Confirmed Could Explain Mysterious Red Dots Solve the daily Crossword