logo
How a plume of magma threatens to one day rip east Africa apart

How a plume of magma threatens to one day rip east Africa apart

Times25-06-2025
Africa is being torn apart by a pulsing plume of magma rising from deep within the Earth that is set to slice off the continent's east coast to form a new ocean, researchers have found.
A new ocean basin will gradually form in a low-lying region of Ethiopia and, in several million years' time, scientists believe this will develop into a vast crack running from northern Ethiopia down to the middle of Mozambique.
This could result in a 3,200-mile stretch of the east African coast, extending several hundred miles inland, splitting from the rest of the continent as the tectonic plate stretches, thins and eventually ruptures 'almost like soft plasticine'.
This would leave a narrow ocean between continental Africa and a vast new island made up of present-day Somalia and large parts of what are now Ethiopia, Kenya, Tanzania and Mozambique.
The Afar region of Ethiopia is a rare area where three tectonic rifts converge: the Main Ethiopian, Red Sea and Gulf of Aden rifts.
Geologists had suspected that a 'hot upwelling' of molten mantle, often known as a plume, was rising up from between 620 and 1,700 miles deep, shooting upwards and melting the continental crust, weakening and thinning it.
Researchers from the University of Southampton collected more than 130 samples of volcanic rock from the Afar region and Main Ethiopian Rift. They used modelling to understand the structure of the crust and mantle in the area.
They found that beneath the Afar region there was an asymmetrical plume coming up out of the mantle, with patterns that differed in each of the three rifts.
'We found that the mantle beneath Afar is not uniform or stationary — it pulses, and these pulses carry distinct chemical signatures,' said Dr Emma Watts, lead author of the study who is now at Swansea University. 'These ascending pulses of partially molten mantle are channelled by the rifting plates above.'
The results suggest the plume is 'pulsing like a heartbeat', said Tom Gernon, a professor of Earth science at Southampton. 'These pulses appear to behave differently depending on the thickness of the plate, and how fast it's pulling apart. In faster-spreading rifts like the Red Sea, the pulses travel more efficiently and regularly like a pulse through a narrow artery.'
When a hot plume of magma rises from deep within the Earth it flows beneath the base of the tectonic plates and helps to 'focus volcanic activity to where the tectonic plate is thinnest'.
'This has profound implications for how we interpret surface volcanism, earthquake activity and the process of continental break up,' said Dr Derek Keir, a co-author of the study, which is published in the journal Nature Geoscience.
Gernon said that part of the Afar region was about 120 metres below sea level and had been flooded by the sea several times in the past, including 80,000 years ago, as shown by salt deposits in the area.
'The formation of a fully developed ocean and mid-ocean ridge — that is, a plate tectonic feature where new ocean crust is created — in this region is likely to take several million years,' he said.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Mysterious species found living alongside our earliest ancestors deemed missing link in evolution
Mysterious species found living alongside our earliest ancestors deemed missing link in evolution

Daily Mail​

time11 hours ago

  • Daily Mail​

Mysterious species found living alongside our earliest ancestors deemed missing link in evolution

A lost chapter in human evolution has been discovered among a collection of teeth that dates back 2.8 million years. Researchers from Arizona State University announced that they have found a previously unknown species of ancient humans that appear to have coexisted with members of the genus Homo, our direct ancestors, in Africa. The team added that this era, between 2.6 and 2.8 million years ago, was a critical period in human evolution because it marked the earliest appearance of the Homo species ever found. Researchers also discovered the oldest known stone tools at the Ledi-Geraru site in the Afar region of Ethiopia. In 2013, another team unearthed a 2.8-million-year-old Homo jawbone at the same site. However, the 13 teeth uncovered here recently do not belong to our direct ancestors. Instead, the research team found that they came from a new member of the Australopithecus species, a group closely related to modern humans who lived in Africa between two and four million years ago. Unlike previous fossils from the species Australopithecus afarensis, these teeth were noticeably different, showing that a new evolution of early humans developed in this region and overlapped with members of our family tree. Researchers said this lost Australopithecus species suggests that human evolution was complex, with multiple species coexisting, not just a simple progression from ape to human. The most famous member of the Australopithecus afarensis species has been a fossil named 'Lucy,' whose fossil skeleton was discovered in 1974 in Hadar, Ethiopia. Australopithecus walked upright, a key human trait, but examinations of skull fragments have found they had smaller brains and ape-like features, such as larger teeth and robust jaws for chewing tough plants. However, researchers have not been able to find any fossils at the Ledi-Geraru site that match Lucy's species. The differences in the 13 Australopithecus teeth unearthed there, along with the presence of the Homo species, suggest that Lucy's species did live beyond 2.95 million years ago, according to the study in Nature. ASU paleoecologist Kaye Reed said: 'This new research shows that the image many of us have in our minds of an ape to a Neanderthal to a modern human is not correct — evolution doesn't work like that.' 'Here we have two hominin species that are together. And human evolution is not linear; it's a bushy tree, there are life forms that go extinct,' Reed added in a statement. The 'bushy tree' theory Reed mentioned refers to the concept of multiple early human species living simultaneously in ancient times. Some would go extinct while others would lead to the development of modern humans, like the species Homo. Researchers added that the new fossils don't represent a single 'missing link' but rather show evidence of diverse overlap during this evolutionary period. 'We know what the teeth and mandible of the earliest Homo look like, but that's it,' Reed explained. 'This emphasizes the critical importance of finding additional fossils to understand the differences between Australopithecus and Homo, and potentially how they were able to overlap in the fossil record at the same location,' the study author continued. The genus Homo includes modern humans and our closest extinct relatives. The Ledi-Geraru Homo fossils, including the new teeth and the previously found jawbone, revealed that early Homo individuals likely had slightly larger brains and smaller teeth than Australopithecus. This suggests that the human diet was already shifting millions of years ago towards more meat or softer plants than Lucy's species ate. These humans also learned to use primitive tools, which the ASU researchers also found at the site. The fossils' age was determined by dating volcanic ash layers containing feldspar crystals, a method that pinpoints the time of eruptions sandwiching the fossils. The Ledi-Geraru landscape, once a vegetated area with rivers and lakes, was much different than today's arid badlands. The ASU team noted that future research will focus on tooth enamel to explore diet and potential interactions between the Homo and Australopithecus, such as whether these species competed for food or peacefully lived in different ecological regions of Africa.

Study finds medication lowers risk of dangerous behaviors in people with ADHD
Study finds medication lowers risk of dangerous behaviors in people with ADHD

Daily Mail​

timea day ago

  • Daily Mail​

Study finds medication lowers risk of dangerous behaviors in people with ADHD

ADHD affects around five per cent of children and 2.5 per cent of adults globally and is linked increased risks of suicidal behaviors, substance abuse, transport accidents, and criminality if people do not seek treatment. An international team of researchers wanted to fin out if taking medication would mitigate these risks. Researchers from the University Of Southampton, UK and the Karolinska Institute in Sweden found that during two years of treatment with ADHD medication, people who took the drugs were less likely to experience these harmful incidents than those weren't medicated. Around 22 million Americans are estimated to have ADHD and just over half of these are prescribed medication to manage their symptoms. Medications are classified into two main categories: stimulants and non-stimulants. Stimulants, the most common type, include methylphenidate and amphetamine-based medications that improve the transmission of the brain chemical dopamine which affects mood, motivation and movement. Non-stimulant options like atomoxetine, clonidine, and guanfacine can also be used, if stimulants are not effective or well tolerated. These help improve the transmission of norepinephrine, a hormone that helps with alertness and focus. Exactly why the condition occurs is not completely understood, but ADHD tends to run in families, suggesting genes may play a part. In the new study, researchers examined multiple population and health records in Sweden. The team used a novel study design called a 'trial emulation' to simulate a trial using existing real-world data from 148,581 people with ADHD. Comparing those who had started any type of ADHD medication within three months of diagnosis with those who hadn't, they looked at the records over the following two years. They found any form of medication reduced the first occurrence of four of the five incidents (with accidental injury being the exception) and all five outcomes when considering recurring incidents. Those taking stimulant medication were associated with the lowest incident rates, compared to non-stimulant medications. Methylphenidate was the most commonly prescribed drug, the researchers found. The likelihood was most reduced amongst people exhibiting a recurring pattern of behavior, such as multiple suicide attempts, numerous drug relapses or repeat offending. Medication didn't reduce the risk of a first-time accidental injury, but did reduce the risk of recurring ones. The study is the first of its kind to show the beneficial effect of ADHD medication on these broader clinical outcomes using a novel statistical method and data representative of all patients in routine clinical care from a whole country. Dr Zheng Chang, senior author of the study from the Karolinska Institute said: 'This finding is consistent with most guidelines that generally recommend stimulants as the first-line treatment, followed by non-stimulants. 'There is an ongoing discussion regarding whether methylphenidate should be included in the World Health Organization model list of essential medications, and we hope this research will help to inform this debate.' Co-senior author on the paper Samuele Cortese, a National Institute For Health And Care Research (NIHR) Research Professor at the University of Southampton added: 'The failure form clinical services to provide timely treatments that reduce these important outcomes represents a major ethical issue that needs to be addressed with urgency, with the crucial input of people with lived experience.'

Stone Age humans were picky about which rocks they used for making tools, study finds
Stone Age humans were picky about which rocks they used for making tools, study finds

The Independent

time3 days ago

  • The Independent

Stone Age humans were picky about which rocks they used for making tools, study finds

Early human ancestors during the Old Stone Age were more picky about the rocks they used for making tools than previously known, according to research published Friday. Not only did these early people make tools, they had a mental picture of where suitable raw materials were located and planned ahead to use them, traveling long distances. By around 2.6 million years ago, early humans had developed a method of pounding rocks together to chip off sharp flakes that could be used as blades for butchering meat. This allowed them to feast on large animals like hippos that gathered near a freshwater spring at the Nyayanga archaeological site in Kenya. 'But hippo skin is really tough" — and not all rocks were suitable for creating blades sharp enough to pierce hippo skin, said co-author Thomas Plummer, a paleoanthropologist at Queens College of the City University of New York. Co-author Emma Finestone of the Cleveland Museum of Natural History added: 'When we think about stone tools, not every rock is equal in terms of the quality of tools.' At the Nyayanga site, researchers found durable blades made of quartzite, a rock material that they traced to streambeds and other locations around 8 miles (13 kilometers) away. The new research appears in the journal Science Advances. 'This suggests they've got a mental map of where different resources are distributed across the landscape,' said co-author Rick Potts of the Smithsonian 's Human Origins Program. Previously, researchers had assumed the stones may have been found within just a mile or so of the freshwater spring site. The new study shows that 'these early humans were thinking ahead. This is probably the earliest time we have in the archaeological record an indication of that behavior,' said Eric Delson, a paleoanthropologist at the American Museum of Natural History, who was not involved in the research. The oldest previously known example of early human ancestors transporting raw materials for tool-making was about 600,000 years later than the Nyayanga site. Researchers said it's unclear who these early toolmakers were — whether members of the Homo genus or a related but extinct branch of the family tree, such as Paranthropus. Homo sapiens did not arise until much later, around 300,000 years ago. But the knack for seeking out the best raw materials to make simple technology dates back nearly 3 million years. 'We today are a species that's still technology-dependent — using tools to spread around the world and adapt to different environments,' said Finestone. ___ The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute's Department of Science Education and the Robert Wood Johnson Foundation. The AP is solely responsible for all content.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store