Spacecraft lands on Moon but 'orientation' unclear
But Intuitive Machines said it had yet to confirm the "orientation" of the spacecraft, called Athena, and was working to confirm its condition.
The company is partnering with US space agency Nasa to look for evidence of water and ice on the lunar surface.
Lunar landings are very difficult, and the company will be hoping the touchdown was smooth after its first craft landed on its side last year.
The spacecraft Athena landed shortly after 1730GMT (1230EST).
A picture should soon be released showing Athena about 100 miles (160km) from the South Pole in an area of the lunar highlands called Mons Mouton.
If the landing has been successful, the craft will have 10 days to complete scientific observations and measurements.
The instruments on board include a jumping robot called Micro Nova Hopper or Grace, which is designed to leap and fly across the Moon's surface to reach a large crater that is in permanent shade.
The hopper should be released from the main spacecraft in coming days and fly up to 100m in altitude.
It will travel up to 1.2 miles (2km) and after five leaps, it should land inside the crater with a camera to take the first images of the interior.
The crater is in permanent shadow from the Sun's rays, so it has very low temperatures and is considered an ideal place to look for ice.
Intuitive Machines, which made the hopper, say it can travel to places that other machines, like robots with wheels, can't reach or would take a very long time to get to.
"These hoppers are really suited to the lunar environment because there's no atmosphere there, practically speaking, so doing a series of controlled leaps is a great way to move around," says Prof Simeon Barber, a lunar scientist with the Open University.
The IM-2 mission is also carrying three scientific instruments made by Nasa.
A drill called Trident will churn up rocks to reach the surface under the Moon to see if there is evidence of ice.
Then an instrument called a mass spectrometer will analyse any gases that are released.
And a type of antenna mast developed with Nokia should also be planted on the Moon that uses the same 4G cellular technology as on Earth.
The mission is part of Nasa's long-term goal to take humans back to the lunar surface, as the agency hopes to send astronauts in 2027 with the Artemis programme.
"This is another step towards assessing the viability of the lunar South Pole as a place to go and set up future bases for humans," says Prof Barber.
Experts want to explore options for building settlements and find out if there are reserves of water that could provide drinking water and potentially be turned into oxygen.
"A lot of planning of future exploration is being predicated on the presence of water ice, but if you want to use it, you need to know where it is and how much there is," says Prof Barber.
Nasa is partnering with a range of private companies that transport spacecraft and instruments to the Moon. It says this is cheaper than developing and blasting off their own missions.
Intuitive Machines successfully landed a craft called Odysseus on the Moon in February last year, but it tipped over during the descent, meaning not all the scientific work could be carried out.
Space agencies globally are competing to build human settlements on the Moon in a race to exploit resources and advance scientific understanding of other worlds.
In the US, the Moon mission is seen as a stepping stone for the longer-term and much more ambitious goal of human settlement on Mars.
The IM-2 mission could also help to answer broader questions about why there is ice in the inner solar system, closer to the Sun's warming rays.
"The permanently shadowed regions on the Moon are kind of a store and archive of ancient water that might have been delivered to the Earth-Moon system after their formation," explains Prof Mark Fox-Powell at the Open University.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
2 hours ago
- Yahoo
Could Comet 3I/Atlas Be A Threat? Here's What Experts Are Saying
On the 1st of July 2025, the Asteroid Terrestrial-Impact Last Alert System (ATLAS) in Chile spotted a new comet entering our solar system. This comet was named 3I/ATLAS, as it's only the third interstellar object humans observed passing through our solar system. The previous two interstellar bodies discovered were 1I/'Oumuamua (spotted in 2017), and 2I/BORISOV (detected in 2019). It seems that 3I/ATLAS is similar to 2I/BORISOV by its icy composition. Beyond that, we don't know much about the new interstellar visitor. Scientists rush to observe 3I/ATLAS and discover as much as they can, as it's predicted by its current trajectory and speed to leave our solar system by the end of the year. It will come closest to our sun in late October 2025, and the sun will melt some of its ice, which means 3I/ATLAS might get a robust comet tail composed of vapor and dust. Currently, this comet has a faint coma, the cloud of dust and gas that surrounds its nucleus. But this might change with its approach to the sun. Another interesting fact is that 3I/ATLAS will pass through Mars' orbit, and we don't know what will happen then. The fact that it was ATLAS that first discovered this comet got some people concerned. The Asteroid Terrestrial-Impact Last Alert System has a defensive nature. It's designed to spot and warn us about comets, asteroids, or other space objects that might be on a collision course with Earth. However, according to NASA, the interstellar object will most likely fly far enough from our planet without posing any danger. Read more: This Is How Most Life On Earth Will End What NASA Has To Say The ATLAS observatory in Chile is part of NASA's early warning program, spotting and defining all near-Earth objects (NEOs), especially if they're asteroids and comets that could strike our planet. ATLAS uses a network of wide-field telescopes that scan the night sky above Earth 24/7. Although designed for planetary defense against hazardous space objects, ATLAS is capable of detecting non-threatening, but scientifically interesting objects as well. The telescopes that are part of this defensive network are based in several observatories around the globe (South Africa, California, and Chile, to name a few), providing the researchers with round-the-globe coverage of the night sky. Of course, when 3I/ATLAS was first discovered, the first things determined were its trajectory and velocity. It was concluded that this comet is traveling at the speed of 137,000 miles/hour (61km/s), and the closest it will approach Earth is at 1.8 astronomical units (170 million miles, or 270 million kilometers, from Earth). NASA has ultimately concluded that 3I/ATLAS poses no threat to our planet. That said, the most interesting known fact about this interstellar visitor is its age. Following its current trajectory, scientists were able to determine 3I/ATLAS originated in a part of the Milky Way that we know is older than our solar system; meaning it's potentially older than 4.6 billion years old. It's estimated that 3I/ATLAS is around 7 billion years old, making it the oldest comet observed by humans so far. Could It Be An Alien Probe? Although very little is known about 3I/ATLAS so far, there are many interesting theories surrounding this interstellar visitor. Harvard-based astrophysicist Abraham Loeb and colleagues from the UK's Initiative for Interstellar Studies, Adam Hibbert and Adam Crowl, believe this interstellar object is not a comet at all; but an alien probe coming from afar to scan Earth and its surroundings. This is not the first time Loeb has suggested such a thing. In 2017, when Oumuamua was discovered, he claimed it was an alien probe due to its unusual shape, acceleration, reflectivity, and lack of trailing gases. Although he didn't come out with any specifics about 3I/ATLAS, Loeb warns that any interstellar object should be observed as possible alien technology. As of now, there's no evidence that 3I/ATLAS is anything but an interstellar comet passing through our solar system. It was lucky that ATLAS detected it, as it is believed millions of such objects pass near or through our system without ever being detected. Scientists such as Loeb might not be completely wrong, however. 3I/ATLAS is a unique interstellar comet, and we should pay more attention to it. Read the original article on BGR. Solve the daily Crossword


The Hill
12 hours ago
- The Hill
Critics shouldn't block NASA's nuclear path to a moon base
Sean Duffy, NASA's interim administrator, proved that the U.S. is serious about establishing a lunar base when he announced the deployment of a 100-kilowatt nuclear reactor on the moon by 2030. The idea, although a sound one, is not without its critics. The announcement that the first element of a lunar base will be a nuclear reactor was logical. Nuclear power, unlike solar, is available 24/7 and thus does not require backup batteries during periods when the sun is not available. That the reactor is first means that every other element of the lunar base can be hooked up and powered up immediately. As NPR notes, a 100-kilowatt reactor on Earth would be able to power 70 to 80 private homes in the United States, so it could power a decent-sized lunar base. It would have to withstand the extremes of heat and cold on the moon, not to mention the possibility of moonquakes and meteor strikes. Instead of water to cool it, the reactor would simply radiate the heat it creates into space. The cost would be about $3 billion. Space lawyer Michelle Hanlon describes some of the legal aspects of placing a nuclear reactor on the moon, especially in context of the space race with China. While the Outer Space Treaty prohibits claims of national sovereignty on the moon, the establishment of a nuclear reactor, especially with a lunar base attached to it, grants the nation-state that does it some measure of control over the surrounding territory. Its Article IX requires that states act 'with due regard to the corresponding interests of all other States Parties to the Treaty.' The practical effect of the Article IX provision is that the first country to establish a lunar base on the moon's south pole would be able to claim control over some prime real estate, important where ice mining is likely to be an essential enterprise. Duffy is therefore correct that the U.S. and its allies should be first with a nuclear reactor and a lunar base before China can establish its own and thus exert control. The idea of a nuclear-powered lunar base is not without its critics. For example, a CBS News host opined that colonizing the moon was akin to the colonization of native peoples on Earth by European powers. Celebrity astrophysicist Neil deGrasse Tyson set him straight by pointing out that no native peoples exist on the moon or anywhere else in the solar system beyond Earth. The exchange elicited eyerolling on the Fox News show 'The Five.' But even there, some griping occurred. Dana Perino, who used to work for President George W. Bush, expressed considerable ennui about the whole concept of space travel. From the perspective of someone who has seen a space shuttle launch in person and watched men walk on the moon live on television, the attitude seems to be bizarre and dispiriting. Tyrus, the former wrestler turned social and political commentator, trotted out the 'let's solve problems on Earth before we go into space' trope that has been around since the beginning of the space age. The obvious answer has always been, 'Do both.' Ross Marchand, writing for Real Clear Science, noted the $37 trillion national debt and then claimed that building a lunar base would be just too expensive. He undermined his argument by comparing the 100-kilowatt lunar nuclear power plant to the 1-gigawatt reactors that exist on Earth and cost $10 billion to build (largely because of permitting and environmental regulation problems). Then he increased the estimated cost by a factor of 10 'or more.' Although NASA projects often do suffer cost overruns, $3 billion to $100 billion would be a little much, even for the space agency with its history of inefficiency. Marchand also trotted out the 'robots can explore space cheaper and better than humans' claim that was soundly debunked by the late, great lunar geologist Paul Spudis. In fact, returning to the moon and going on to Mars also polls well and has bipartisan political support, even it still has its critics. No great endeavor ever undertaken since the beginning of civilization has not had people saying it can't or shouldn't be done. The International Space Station, for example, drew fierce opposition and was almost cancelled more than once. The orbiting space laboratory is currently churning out a stream of scientific discoveries and technological innovations, confounding its early critics, who are long since forgotten. The lunar base and even Elon Musk's planned Mars colony will undergo a similar process. Future generations will find it difficult to imagine a universe where humans just occupied one world. Mark R. Whittington, who writes frequently about space policy, has published a political study of space exploration entitled ' Why is It So Hard to Go Back to the Moon? ' as well as ' The Moon, Mars and Beyond,' and, most recently,' Why is America Going Back to the Moon? ' He blogs at Curmudgeons Corner.
Yahoo
12 hours ago
- Yahoo
Astronomers Say They've Finally Solved the 'Little Red Dots' Mystery
When the James Webb Space Telescope first came online in 2022, it immediately spotted something astronomers had never seen before: "little red dots" peppering the ancient expanse of deep space, originating from around when the universe was just one billion years old. Ever since, we've struggled to explain what these faint signals could be. The prevailing theory is that they're some kind of extremely compact galaxy. But at only two percent of the diameter of the Milky Way, the distribution of stars would have to be impossibly dense, perhaps more so than our current laws of physics allow. They're also too faint to be produced by a quasar, a type of supermassive black hole that is actively devouring matter, which it causes to heat up and glow. Moreover, the black holes would be "overmassive" for such a small galaxy, scientists argue. Now, famed Harvard astronomer Avi Loeb (or infamous, depending on how you view his speculative theories regarding aliens) and his colleague Fabio Pacucci believe they have an answer. In a new study published in the Astrophysical Journal Letters, the pair reinforce the idea that the family of red oddities are, in fact, galaxies — but are unusually tiny because they haven't started spinning up to speed yet. It's a hypothesis rooted in one of the leading theories for galaxy formation, which holds that these structures form in "halos" of dark matter, the invisible substance thought to account for 85 percent of all mass in the cosmos. While we can't see or interact with dark matter, it does exert a significant gravitational influence, which explains how the largest structures in the cosmos came together and took shape. In the study, the astronomers propose that the diminutive galaxies formed in halos that just so happened to be among the slowest spinning in the cosmos, with 99 percent of halos spinning faster. The idea, in principle, is simple. If you held out a piece of rope in one hand and started spinning in place, the rope would stretch out and reach farther. But if you slowed down, the rope would slump to the ground. This hypothesis would explain why we're only seeing the dots at such a nascent period of the universe. Over time, the halos would inevitably speed up, and their constituent galaxies would expand. "Dark matter halos are characterized by a rotational velocity: some of them spin very slowly, and others spin more rapidly," Loeb said in a statement about the work. "We showed that if you assume the little red dots are typically in the first percentile of the spin distribution of dark matter halos, then you explain all their observational properties." It's a compelling theory — but it's not the only game in town. Recently, two teams of astronomers found clues that what we're witnessing may actually be an entirely new class of cosmic object: "black hole stars." Their work suggests the glowing dots are an active supermassive black hole surrounded by a vast and thick shell of gas. The intense radiation of the black hole heats up the shell, which absorbs most of the emissions, dimming the light to an outside observer. In many ways, it resembles a star blown up to epic proportions — except, instead of nuclear fusion powering the center, there's a voracious black hole churning through matter. Loeb and Pacucci's theory doesn't address whether these slow-spinning galaxies have a black hole at their center, but suggests that they could form one. "Low-spin halos tend to concentrate mass in the center, which makes it easier for a black hole to accrete matter or for stars to form rapidly," Pacucci said in the statement. The luminous red dots, he added, "might help us understand how the first black holes formed and co-evolved with galaxies in the early universe." More on space: Astronomers in Awe of Terrifying "Eye of Sauron" That's Pointed Straight at Earth Solve the daily Crossword