logo
'Marsquakes' reveal clues about a hidden body of water on Mars

'Marsquakes' reveal clues about a hidden body of water on Mars

Yahoo13-05-2025
When you buy through links on our articles, Future and its syndication partners may earn a commission.
Scientists have found seismic clues that suggest liquid water may be hiding beneath Mars' surface.
By listening to the echoes of "marsquakes" — seismic waves rippling through Mars' crust — researchers uncovered signs of water lingering at the base of the planet's upper crust, which sits between 3.4 and 5 miles (5.4 and 8 kilometers) below the surface.
"Within our solar system, Mars has consistently been at the forefront of the search for extraterrestrial life," said Weijia Sun, a professor at the Institute of Geology and Geophysics, Chinese Academy of Sciences and one of the study's authors, to Space. "The presence of liquid water is regarded as one of the most critical factors in this endeavor."
Liquid water was thought to once flow freely across Mars during the planet's Noachian and Hesperian periods — an era stretching from the planet's formation up to about 3 billion years ago. However, as Mars entered the Amazonian period, its climate dramatically shifted. Surface water disappeared, leaving behind the cold, dry landscape we see today.
"While the presence of flowing water on Mars is now indisputable, the volume and mechanisms of its disappearance remain subjects of active debate," said Sun.
One theory suggests Mars lost its water to space as solar wind stripped it from the atmosphere — a process supported by ratios of isotopes on the Red Planet, or distinct species of chemical elements, seen today. Another proposes that the water didn't vanish, but rather sank into the crust. This would suggest pockets of water in deep underground aquifers. While some models predict liquid water could survive in the middle crust, its extent remains uncertain due to a lack of detailed structural data from those depths.
NASA and other space agencies have sent rovers and orbiters equipped with ground-penetrating radar to explore beneath Mars' surface — but these tools can only see a few miles deep. That's because electromagnetic signals quickly fade as you go deeper into the crust.
But Sun and his team took a different approach. Instead of radar, they tapped into data of seismic waves generated by two massive meteorite impacts (S1000a and S1094b) and the largest recorded marsquake (S1222a). "While previous computational studies have suggested the potential presence of liquid water on Mars, these predictions lacked observational support that seismology offers," he said.
By analyzing how these waves traveled through the crust, they were able to map its fine structure — and search for anomalies that might hint at liquid water. "We used a technique called 'receiver functions,' which represent the signatures of seismic waves as they reflect and reverberate between crustal layers, analogous to echoes mapping a cave," Hrvoje Tkalčić, a professor at The Australian National University and co-author of the study, told Space.com. "These signatures enable the precise identification of the thicknesses of layers and the depth to the boundaries where rock properties change."
"Unlike traditional receiver function techniques, we introduce the concept of true-amplitude imaging, a method adapted from the oil exploration field, which significantly improves resolution and allows the detection of much smaller structures," Sun said. "The true-amplitude receiver function acts as a magnifying glass, enhancing the clarity of subsurface features.'
The team's analysis revealed an unusual zone deep underground at about 3 to 5 miles (5 to 8 kilometers) where seismic waves slowed down. Initially, this was thought to be the result of a fractured sedimentary layer of rock, where reduced stiffness and increased compliance make the rock less able to transmit a wave's energy. However, based on its position within the crust, it was unlikely this layer was made up of sediments.
"In general, seismic waves propagate significantly faster through dry rock than through water-saturated rock," said Sun. Instead, the team suggests this "low velocity" layer could actually be filled with liquid water because rocks in this area, called altered basalts, have high porosity, which might allow them to hold water.
"Through a comprehensive analysis, we inferred that the low-velocity layer could be attributed to the presence of liquid water, where temperatures exceed the freezing point within the specified depth range," Sun said.
Based on their data, they estimated the existence of between 569 and 853 yards (520–780 meters) of Global Equivalent Layer (GEL) — a metric used to quantify the volume of water when distributed uniformly across the entire surface of a planet or moon. This number roughly coincides with the between 776 and 1,006 (710 and 920 meter) GEL, that cannot be accounted for with Mars' present-day water inventory.
Related Stories:
— Mars orbiter snaps 1st image of Curiosity rover driving on the Red Planet (photo)
— NASA's Curiosity Mars rover discovers evidence of ripples from an ancient Red Planet lake (images)
— Perseverance Mars rover finds 'one-of-a-kind treasure' on Red Planet's Silver Mountain
"The presence of subsurface water on Mars holds significant implications for future human missions and the potential for extraterrestrial life," said Tkalčić. "However, drilling or extracting water from deep underground would necessitate advanced technology and substantial energy resources."
While this study provides critical insights into the Martian water cycle and the evolution of its environment, the researchers emphasize that their estimate is based solely on data gathered from a local profile beneath the InSight lander, located in the Elysium Planitia region, about 4.5 degrees north of the Martian equator.
This could mean the findings are specific to this particular area and may not fully represent the planet's entire surface. "This limitation can be addressed by future missions equipped with seismometers on Mars," concluded Tkalčić.
The study was published on April 25 in the journal National Science Review.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Gene that differs between humans and Neanderthals could shed light on the species' disappearance, mouse study suggests
Gene that differs between humans and Neanderthals could shed light on the species' disappearance, mouse study suggests

Yahoo

time2 hours ago

  • Yahoo

Gene that differs between humans and Neanderthals could shed light on the species' disappearance, mouse study suggests

When you buy through links on our articles, Future and its syndication partners may earn a commission. A protein that helps synthesize DNA is different in modern humans than it is in Neanderthals and Denisovans — our closest extinct relatives — and new experiments in mice genetically modified to express the modern human version hint that this may have made us behave differently. That discovery, in turn, could shed light on why Neanderthals and Denisovans vanished, researchers propose in a new study. But the significance of the findings for humans is still unclear. "It's too early to translate these findings directly to humans, as the neural circuits of mice are vastly different," study lead author, Xiangchun Ju, a postdoctoral researcher at the Okinawa Institute of Science and Technology in Japan, said in a statement. However, this work hints that the variant seen in modern humans "might have given us some evolutionary advantage in particular tasks relative to ancestral humans," such as competing for scarce resources. Key protein Previous research found that modern humans diverged from their closest evolutionary relatives, Neanderthals and Denisovans, about 600,000 years ago. It's not clear why modern humans survived while our closest relatives died off. To search for potential genetic clues to solve this mystery, the researchers analyzed the enzyme ADSL (adenylosuccinate lyase). This protein helps synthesize purine, one of the fundamental building blocks of DNA and other vital molecules. Related: A braided stream, not a family tree: How new evidence upends our understanding of how humans evolved "There are a small number of enzymes that were affected by evolutionary changes in the ancestors of modern humans. ADSL is one of them," study co-author Svante Pääbo, Nobel laureate, leader of the human evolutionary genomics unit at the Okinawa Institute of Science and Technology in Japan, and director of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, said in a statement. ADSL is made up of a chain of 484 amino acids. The version of this enzyme found in virtually all modern humans differs from that seen in both Neanderthals and Denisovans by just one amino acid — the 429th amino acid in ADSL is valine in modern humans but alanine in our extinct relatives. The scientists noted the ADSL mutation is seen in modern humans and not our closest extinct relatives, and so likely appeared after we separated from the lineage that led to Neanderthals and Denisovans. This led the researchers to investigate the possible behavioral effects of this mutation. Previous research on lab-grown cells found that the ADSL variant seen in modern humans resulted in a more unstable version of the enzyme that broke down more quickly compared to the one in Neanderthals and Denisovans. Behavior changes The new study, published Aug. 4 in the journal PNAS, similarly found that, in mice, the modern variant leads to higher levels of the chemicals that ADSL normally acts on to synthesize purine in several organs, especially the brain. This finding supported the idea that the modern human version of ADSL is less active than the variant seen in Neanderthals and Denisovans. In experiments where mice learned they could get a drink of water following specific lights or sounds, female mice genetically modified to possess a version of ADSL similar to the kind seen in modern humans were better at getting water than their littermates without this variant were. This might suggest the human-like variant made female mice better at learning to connect the dots between the water and the lights or sounds, or more motivated to seek out the water in some way. The changes in behavior and ADSL levels seen in female mice with the modern-human variant of the enzyme was not seen in male mice. "It's unclear why only female mice seemed to gain a competitive advantage," study co-author Izumi Fukunaga, a researcher at the Okinawa Institute of Science and Technology, said in a statement. "Behavior is complex." Statistical tests analyzing Neanderthal; Denisovan; and modern African, European and East Asian DNA found that mutations in the ASDL gene appeared in modern human genomes at higher rates than random variations over time would suggest, making it likely that these mutations provided some evolutionary advantage. Perhaps running counter to the new findings, prior work found that genetic disorders leading to ADSL deficiency in modern humans can lead to intellectual disability, speech and language impairment, and other problems. This suggests that during evolution, modern humans had to balance the potential benefits of reducing ADSL activity with the problems that could occur from ADSL deficiency, study co-author Shin-Yu Lee, also of the Okinawa Institute of Science and Technology, said in a statement. Implications unclear Not everyone thinks the study has direct implications for why modern humans thrived or for why Neanderthals or Denisovans disappeared. These results in mice "don't say too much about human evolution at this stage," Mark Collard, a paleoanthropologist at Simon Fraser University in Burnaby, British Columbia who did not take part in this research, told Live Science. RELATED STORIES —What was the first human species? —2.6 million-year-old stone tools reveal ancient human relatives were 'forward planning' 600,000 years earlier than thought —'It makes no sense to say there was only one origin of Homo sapiens': How the evolutionary record of Asia is complicating what we know about our species However, the strategy of using mice to study the behavioral effects of genetic differences between modern humans and our closest extinct relatives "seems very promising as a way of investigating the evolution of our brain and behavior," Collard said. "I expect we'll see a cascade of studies like this one in the next few years." Future research can investigate the specific mechanisms by which changes in ADSL activity influence behavior. Scientists can also explore how changes in ADSL activity are associated with other behaviors and how multiple genetic changes might work in concert, the study authors wrote. Solve the daily Crossword

See a razor-thin crescent moon join Jupiter and Venus in the predawn sky on Aug. 20
See a razor-thin crescent moon join Jupiter and Venus in the predawn sky on Aug. 20

Yahoo

time7 hours ago

  • Yahoo

See a razor-thin crescent moon join Jupiter and Venus in the predawn sky on Aug. 20

When you buy through links on our articles, Future and its syndication partners may earn a commission. Look to the east in the hours preceding sunrise on Aug. 20 to see a thin crescent moon rendezvous with Venus and Jupiter to form a celestial triangle in the predawn sky. TOP TELESCOPE PICK Want to see the planets of the solar system for yourself? The Celestron NexStar 8SE is ideal for beginners wanting quality, reliable and quick views of celestial objects. For a more in-depth look at our Celestron NexStar 8SE review. The 9%-lit waning crescent moon can be found roughly 15 degrees above the eastern horizon an hour and a half before sunrise on Aug. 20, embedded in the twinkling stars of the constellation Gemini. Venus will be visible as a bright 'morning star' shining approximately 5 degrees to the lower right of the lunar disk, while Jupiter will sit less than 10 degrees to the upper right of the moon, forming the highest point of the cosmic triangle. Remember, the width of your fist held at arm's length accounts for roughly 10 degrees of night sky. The bright stars Castor and Pollux will be positioned to the left of the moon in the early morning hours of Aug. 19. Mercury, meanwhile, will be visible close to the horizon, but will swiftly become lost in the glare of the sun, which rises at 6:11 a.m. ET (1011 GMT) for viewers in New York. Viewing the cosmic trio with a 6-inch telescope will reveal the dark oval of the Grimaldi Basin impact site scarring the lunar surface, along with cloud bands on the surface of Jupiter, and the moon-like phases of Venus, under good atmospheric conditions. The coming nights will see the wafer-thin lunar crescent sweep past Venus to join Mercury and the Beehive open star cluster in the constellation Cancer, the crab, ahead of its new moon phase on Aug. 23. Stargazers looking for new equipment with which to explore the night sky should check out our roundups of the best telescopes and binoculars available in 2025. Photographers should also read up on our roundups of the best lenses and cameras for astrophotography. Editor's Note: If you capture a picture of the crescent moon with Jupiter and Venus and want to share it with readers, then please send your photo(s), comments, name and location to spacephotos@

Don't miss Mercury, the moon and the Beehive Cluster align in a special August morning sky show
Don't miss Mercury, the moon and the Beehive Cluster align in a special August morning sky show

Yahoo

time11 hours ago

  • Yahoo

Don't miss Mercury, the moon and the Beehive Cluster align in a special August morning sky show

When you buy through links on our articles, Future and its syndication partners may earn a commission. Isaac Asimov (1920-1992), a legendary writer of science and science fiction, once noted in "The Solar System and Back," that the planet Mercury is rarely visible when it is truly dark. "I suspect, in fact," he observed, "that many people today (when the horizon is generally much dirtier and the sky much hazier with the glare of artificial light than it was in centuries past) have never seen Mercury." In pre-Christian times, Mercury had two names, as it was not realized that it could alternately appear on one side of the sun and then the other. When visible in the evening sky, it was called Mercury and when appearing as a morning star, it was known as Apollo. It was Pythagoras, around the 5th century B.C., who first recognized that Mercury and Apollo were the same celestial body. A fine viewing window is now open Mercury is indeed clever at escaping detection. It is said that the astronomer Copernicus never saw the planet. Yet you can find it, if you know where to look. As the innermost planet, Mercury is usually masked by the sun's glare, so we must look for Mercury either soon after sunset, or in the case we are discussing here, just before sunrise. On the morning of Tuesday morning (Aug. 19), Mercury reaches its greatest western elongation, meaning it's at its maximum apparent distance from the sun. To catch a glimpse, set your alarm for 45 minutes before sunrise and look low toward the east-northeast horizon. First, you'll spot brilliant Venus. About one and a half fist‑widths (approximately 15°) lower left of Venus, look for a bright, yellowish point of light, Mercury. Skinny moon points the way on Thursday On Thursday morning (Aug. 21), besides Venus, there will be another celestial object to guide you to Mercury. That will be our moon. The moon will appear as a very slender sliver of light, only 4% illuminated and less than two days before the new phase. It will be positioned 5 degrees (half a fist) above Mercury. Binoculars will make things a bit easier to make a sighting, though sighting this very thin waning lunar crescent should be evident with the unaided eye. This morning Mercury will shine at magnitude -0.3. Among the stars, only Sirius and Canopus shine brighter, so once you locate the moon, sighting Mercury should be a relatively easy task. And although it swings back toward the sun after Aug. 18, it will continue to be visible until virtually the end of the month as it continues to brighten. By Aug. 28, it will have more than doubled in brightness, reaching a brilliant magnitude of -1. Beehive buzzes nearby TOP TELESCOPE PICK Want to view the night sky up close? The Celestron NexStar 8SE is ideal for beginners wanting quality, reliable and quick views of celestial objects. For a more in-depth look, check out our Celestron NexStar 8SE review. Besides viewing the moon and Mercury with binoculars on Aug. 21, there will be another celestial sight to look for that morning. Try looking for it when the twilight sky is not so bright, roughly an hour or more before sunrise. Located about 2 degrees below the hairline-thin moon will be M44, one of the sky's finest open clusters. Popularly known as the Beehive, it's also one of the nearest open clusters at a distance of 500 light-years. Binoculars are ideal for examining this wide, interesting star field. Its central group of stars is arranged into rough rows that form a generally triangular shape, suggesting an old-fashioned beehive. For centuries, M44 has also been known as Praesepe, Latin for "Manger." Pressing close to it are the two stars that supposedly represented the Northern and Southern Donkeys: Asellus Borealis and Australis. Joe Rao serves as an instructor and guest lecturer at New York's Hayden Planetarium. He writes about astronomy for Natural History magazine, Sky and Telescope and other publications.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store