logo
Scientists find possible artefacts of oldest known Wallacean hominids in Indonesia

Scientists find possible artefacts of oldest known Wallacean hominids in Indonesia

Yahoo2 days ago
SOPPENG, Indonesia (Reuters) -Scientists have found a series of stone tools on Indonesia's Sulawesi island they say may be evidence of humans living 1.5 million years ago on islands between Asia and Australia, the earliest known humans in the Wallacea region.
Archaeologists from Australia and Indonesia found the small, chipped tools, used to cut little animals and carve rocks, under the soil in the region of Soppeng in South Sulawesi. Radioactive tracing of these tools and the teeth of animals found around the site were dated at up to 1.48 million years ago.
The findings could transform theories of early human migrations, according to an article the archaeologists published in the journal Nature in August.
The earliest Wallacean humans, pre-historic persons known as Homo Erectus, were thought to have only settled in Indonesia's Flores island and Philippines' Luzon island around 1.02 million years ago, as they were thought to be incapable of distant sea travel, proving the significance of the Sulawesi findings in theories of migration.
'These were artefacts made by ancient humans who lived on the earth long before the evolution of our species, Homo Sapiens,' said Adam Brumm, lead archaeologist from Griffith University in Queensland, Australia.
'We think Homo Erectus somehow got from the Asian mainland across a significant ocean gap to this island, Sulawesi, at least 1 million years ago," Brumm said.
Wallacea is a region in Eastern Indonesia including several islands such as Sulawesi, Lombok, Flores, Timor, Sumbawa that lie between Borneo and Java and Australia and New Guinea. The region is named for the naturalist Alfred Russel Wallace who studied the fauna and flora of the area.
Solve the daily Crossword
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Trump Order Gives Political Appointees Vast Powers over Research Grants
Trump Order Gives Political Appointees Vast Powers over Research Grants

Scientific American

time2 hours ago

  • Scientific American

Trump Order Gives Political Appointees Vast Powers over Research Grants

US President Donald Trump issued an expansive executive order (EO) yesterday that would centralize power and upend the process that the US government has used for decades to award research grants. If implemented, political appointees — not career civil servants, including scientists — would have control over grants, from initial funding calls to final review. This is the Trump administration's latest move to assert control over US science. The EO, titled 'Improving Oversight of Federal Grantmaking', orders each US agency head to designate an appointee to develop a grant-review process that will 'advance the President's policy priorities'. Those processes must not fund grants that advance 'anti-American values' and instead prioritize funding for institutions committed to achieving Trump's plan for 'gold-standard science'. (That plan, issued in May, calls for the US government to promote 'transparent, rigorous, and impactful' science, but has been criticized for its potential to increase political interference in research.) Impacts might be felt immediately: the latest order directs US agencies, such as the National Institutes of Health (NIH), to halt new funding opportunities, which are calls for researchers to submit applications for grants on certain topics. They will be paused until agencies put their new review processes in place. On supporting science journalism If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today. Trump's EO comes after the US Senate — which, along with the House, ultimately controls US government spending — has, in recent weeks, mostly rejected his proposals to slash the federal budget for science, totalling nearly US$200 billion annually. The White House did not respond to questions from Nature about the EO. Negative reaction Trump, a Republican, has previously used EOs, which can direct government agencies but cannot alter existing laws, to effect policy change. In January, on his first day in office, he signed a slew of EOs with wide-ranging effects, from pulling the United States out of the Paris climate agreement to cutting the federal workforce, which had included nearly 300,000 scientists before he took office. Scientists and policy specialists have lambasted the latest EO on social media. 'This is a shocking executive order that undermines the very idea of open inquiry,' Casey Dreier, director of space policy for the Planetary Society, an advocacy group in Pasadena, California, posted to Bluesky. Also on Bluesky, Jeremy Berg, a former director of the NIH's National Institute of General Medical Sciences, called it a 'power grab'. Speaking to Nature, he said: 'That power is something that has not been exercised at all in the past by political appointees.' In a statement, Zoe Lofgren, a Democratic member of the US House of Representatives from California, called the EO 'obscene'. It could lead to political appointees 'standing between you and a cutting-edge cancer-curing clinical trial', she said. The EO justifies the changes to the grant-awarding process by casting doubts on past choices: it accuses the US National Science Foundation (NSF) of awarding grants to educators with anti-American ideologies and to projects on diversity, equity and inclusion, which are disfavoured by the Trump team. It also points to senior researchers at Harvard University in Cambridge, Massachusetts, and Stanford University in California who have resigned over accusations of data falsification. To 'strengthen oversight' of grants, the EO imposes several restrictions, including prohibiting grants that promote 'illegal immigration' and prohibiting grant recipients from promoting 'racial preferences' in their work or denying that sex is binary. In some cases, the restrictions seem to contradict Congressional mandates. For instance, the NSF has, for decades, been required by law to broaden participation in science of people from under-represented groups — an action that takes race into consideration. In addition to these broader restrictions, the EO directs grant approvals to prioritize certain research institutions, such as those that have 'demonstrated success' in implementing the gold-standard science plan and those with lower 'indirect costs'. As part of its campaign to downsize government spending and reduce the power of elite US universities, the Trump administration has repeatedly tried to cap these costs — used to pay for laboratory electricity and administrative staff, for instance. It has proposed a flat 15% rate for grants awarded by agencies such as the NSF and the US Department of Energy, but federal courts have so far blocked such policies. Some institutions with the highest indirect-cost rates are children's hospitals, Berg told Nature. 'Does that mean they're just not going to prioritize research at children's hospitals?' he asks. Out for review At the heart of the grant-awarding process is peer review. Project proposals have typically had to pass watchful panels of independent scientists who scored and approved funding. 'Nothing in this order shall be construed to discourage or prevent the use of peer review methods,' the EO notes, 'provided that peer review recommendations remain advisory' to the senior appointees. The EO worries many researchers, including Doug Natelson, a physicist at Rice University in Houston, Texas. 'This looks like an explicit attempt to destroy peer review for federal science grants,' he says. Programme officers at agencies, who have been stewards of the grant-review process, are similarly alarmed. 'The executive order is diminishing the role of programme officers and their autonomy to make judgments about the quality of the science,' says an NSF employee who requested anonymity because they are not authorized to speak with the press. 'That's disheartening, to say the least.'

Scientists standing by to rescue rare manatee sighted in cold New England waters
Scientists standing by to rescue rare manatee sighted in cold New England waters

Associated Press

time2 hours ago

  • Associated Press

Scientists standing by to rescue rare manatee sighted in cold New England waters

BOSTON (AP) — A manatee was recently spotted off the coast of Massachusetts for the first time in almost a decade and scientists want to monitor its condition to see if a rescue is necessary before it succumbs to the cold water or lack of food, they said Friday. The threatened species, which makes its habitat in warmer southern Gulf waters in places like Florida, was first seen July 26 off the southwestern coast of Cape Cod in the area of Nantucket Sound. Mashpee resident Jennifer Sullivan took a video of it swimming alongside paddle boarders in an inlet behind a marina surrounded by sea grass. She said on Monday that she found the manatee, which was as long and wide as her paddleboard, 'just lazing around there in the grass going as slowly as possible.' 'It was completely unfazed by us,' said Sullivan, who went on to say she felt 'just in awe of how graceful the creature was and to be so close in the wild to it.' A few days later, the animal was seen stranded on the tidal flats in Mattapoisett. Bystanders who found the manatee beached on the flats around sunrise pushed it back into the water, said Massachusetts Division of Marine Fisheries Protected Species Program Manager Erin Burke. It hasn't been spotted since, Burke said, but a team with the International Fund for Animal Welfare is standing by to rescue the animal if it becomes necessary. The species prefers swimming in warmer waters, usually traveling only as far north as the Carolinas. If the manatee stays in water that is too cold for too long, it could suffer severe illness or death, said New England Aquarium Research Scientist Dr. Nadine Lysiak. Additionally, manatees are herbivores that sustain themselves on extensive seagrass beds and mangroves not typically found in New England. 'Even if it doesn't experience cold stunning, it may have some health declines associated with not having enough food, not having enough water,' she said. 'So it's important to intervene as soon as it's sighted again to prevent health declines.' Lysiak said it's unclear how and why the manatee found its way so far north. It may have followed the warm water Gulf Stream current system from Florida up past the Carolinas and eventually found its way to New England, she said. 'We have kind of an average understanding of what a wild population does in terms of their range, or their habitat range, and some individuals will go beyond that and maybe wander or seek out other habitats or other food sources,' she said. 'It's hard to know exactly why this manatee came to Cape Cod.' Manatee sightings are uncommon in New England, but not unheard of. In 2008 and 2009, different manatees were sighted in Cape Cod Bay — the furthest north the animals have ever been identified. Both were eventually rescued, with one dying on the trip to Florida for rehabilitation. The other survived the trip south, living until 2018. In 2016, a manatee was spotted off the coast of Falmouth. In 2023, one of the animals was seen in Rhode Island. Anyone who sees the manatee is asked to document their GPS position and call the stranding network hotline, (508) 743-9548. Sullivan said she feels 'blessed that I could be in the right place and the right time to see the creature,' and she's hoping it's healthy and safe. 'I pray he just turned right around and went back south,' she said.

A New Chapter For Diabetes—and Regenerative Medicine
A New Chapter For Diabetes—and Regenerative Medicine

Forbes

time6 hours ago

  • Forbes

A New Chapter For Diabetes—and Regenerative Medicine

For decades, the ambitious goal of regenerative medicine has been to replace damaged or lost tissues with healthy, functioning ones. Nowhere is this objective more compelling—or challenging—than in type 1 diabetes. Countless research efforts over the years have sought to restore these cells. Breakthroughs in cell engineering and transplantation are beginning to overcome long-standing roadblocks, and these recent advances are a significant achievement for regenerative medicine as a whole. For millions living with the constant demands and worries of type 1 diabetes, this is more than promising data. It's a moment that hints at a world where glucose monitors and needles might finally become relics of the past. With this, a life free from the daily burdens of diabetes suddenly feels not just possible, but Is Type 1 Diabetes? Type 1 diabetes is a chronic autoimmune disorder defined by the immune system's destruction of insulin-producing beta cells in the pancreas. Insulin is the hormone responsible for moving glucose from the bloodstream into the body's cells for energy. Without it, blood sugar rises to dangerous levels. Over time, it can damage virtually every organ. Most people diagnosed are children or young adults, and living with type 1 diabetes requires ongoing vigilance: regular blood glucose testing, carefully calibrated insulin administration, and persistent risk of life-threatening hypoglycemia. To survive, people with type 1 diabetes must monitor their blood sugar levels constantly. They frequently perform fingerstick tests throughout the day to check their blood glucose levels. Also, they must adjust their diet, exercise routine, and daily schedule to accommodate frequent insulin injections or an insulin pump. Despite advances in technology, keeping blood glucose within a safe range remains challenging, and the risk of life-threatening 'hypoglycemic' episodes—when blood sugar drops too low—is Stem Cell Therapy: Replacing What's Lost This is where the new therapies come into play. They go straight to the heart of the problem: the loss of the body's own insulin-producing cells. Instead of requiring patients to rely on lifelong injections, the focus is now on developing stem cells grown in controlled laboratory environments. These stem cells are engineered to become fully functional islet cells. These are the very clusters that regulate blood sugar in a healthy pancreas. The "off-the-shelf" nature of these cells is crucial. Earlier islet transplant procedures relied on donated organs, which are rare, variable in quality, and subject to lengthy waitlists. The engineered cells, on the other hand, are produced in large quantities. Also, they can be made available as needed. When infused, typically into the liver, these new cells integrate and begin responding to blood sugar levels in real time, releasing insulin as needed. In essence, the therapy is designed to restore the natural balance lost due to the disease. The promise of this approach is already becoming a the Latest Study The most recent results in the development of stem cell–derived therapies for type 1 diabetes stem from a clinical trial conducted by Vertex Pharmaceuticals. This study enrolled patients with established, severe type 1 diabetes. This is a group for whom current treatments often fail to prevent sudden and dangerous drops in blood sugar. Each patient in the trial received a single infusion of lab-grown islet cells, now referred to as zimislecel. To translate the science: the stem cells are first turned into insulin-producing islet cells in the lab. These are then infused into the patient's liver, not the pancreas. If successful, they begin sensing blood sugar levels and releasing insulin as needed, just like a healthy pancreas would. Think of this as swapping out a faulty part with a working one, rather than relying on external fixes. The results over twelve months were consistent and dramatic. All participants in the study were found to be producing their own insulin again. This was confirmed by checking bloodwork to verify that the islet cells were now active. Therefore, the transplanted cells integrated well, and the patients' bodies were able to produce insulin naturally for the first time in years. Even more remarkably, ten of these individuals were able to discontinue daily insulin injections entirely. Every participant met or surpassed the American Diabetes Association's stringent targets for glycemic control. Notably, none suffered severe hypoglycemic This Matters: The Science and Its Impact These results represent a shift in the care landscape for type 1 diabetes. Previous attempts at islet cell replacement used donor cells, which were in very limited supply. By creating islets from universal stem cells, this therapy can be scaled up. It brings the possibility of universal therapies with consistent quality and availability. This offers real hope to millions worldwide. It also signals a foundational advance in regenerative medicine itself. Demonstrating that we can produce, transplant, and integrate functional cell populations to cure a chronic, complex condition illustrates the practical power of stem cell technology. The methodology used here is already being adapted for other therapeutic targets: engineered heart muscle for cardiac repair, retinal cells for vision restoration, and dopaminergic neurons for Parkinson's disease. It establishes a blueprint for tackling similar disorders and builds a bridge from bench research to real-world clinical impact. These advances, however, are not without their complexities. Because the transplanted islet cells are not the patient's own, recipients currently require immunosuppressive medications to prevent rejection—a challenge shared by all current forms of tissue and organ transplantation. Although initial safety profiles are encouraging and side effects manageable, ongoing studies are exploring methods to reduce or eliminate immune suppression, such as gene editing and immune cloaking Road Ahead: What's Next? The achievements described here are far more than incremental progress in diabetes care. They represent proof-of-concept for the broad ambitions of regenerative medicine: restoring lost tissue function, curing chronic diseases, and making transformative treatments widely accessible. As these strategies mature and diversify, their impact will almost certainly extend well beyond any single disease. They offer a pathway to fundamentally change how we approach a broad spectrum of degenerative and autoimmune conditions. The future of regenerative medicine, once hypothetical and distant, now approaches with real hope for curing—not simply managing—a host of devastating chronic conditions.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store