Australia's giant extinct marsupials may be ID'd using tiny bone bits
So how exactly do scientists determine where such fragments come from? One relatively new method for studying ancient bones is palaeoproteomics, the study of preserved proteins. A study published June 3 in Frontiers in Mammal Science describes the first successful use of this type of technique to characterize the bones of extinct species of Australian marsupial megafauna–the giant ancestors of today's Australian marsupials. The team took successful collagen samples from three such species: Protemnodon mamkurra, a giant kangaroo-like creature that is distantly related to today's kangaroos; Zygomaturus trilobus, a member of the extinct Diprotodontidae family that resembles a colossal wombat the size of a present day hippo; and Palorchestes azael, an unusual herbivore that bears a vague resemblance to a tapir.
[ Related: Giant wombats the size of small cars once roamed Australia. ]
Carli Peters of the Universidade do Algarve's MATRIX Project and one of the paper's co-authors, tells Popular Science that the research involved the use of zooarchaeology by mass spectrometry, or ZooMS.
'ZooMS is … based on small differences in the main bone protein, collagen type I, between species/genera/families,' she says. These differences allow for the identification of a collagen 'fingerprint,' which can then be compared to a sample from an as-yet-unidentified bone. If the fingerprints match, you can conclude that the bones are from the same species.
Study co-author and archaeological scientist Katerina Douka explains that this technique can be used to sort through large numbers of fragments in a way that is impractical for other methods such as DNA sequencing.
'Such screening is not practical using DNA due to library preparation and sequencing costs and computational power needed,' she tells Popular Science
But while collagen is hardy and generally less susceptible to degradation over long timescales than DNA, Australia's harsh environment has nevertheless made finding usable samples difficult.
'Fossils deposited in hot, dry and arid places, such as large parts of Australia, lose their collagen very early…. The major challenge [has been] discovering bones that contain [enough] collagen to allow us to apply such type analyses,' Douka says,
The bones used for the study were found in the country's relatively temperate southeast and were initially used for radiocarbon dating and stable isotope analysis of other specimens. This research revealed the presence of preserved collagen, and the team jumped on the opportunity to study them. As Douka points out, 'This is the first time that such markers [have] become available for Australian megafauna.'
This new data immediately opens doors for new research. 'We could identify these species at sites where they were previously not found, furthering our understanding of the past geographic range of these animals,' says Peters.
[ Related: Super-muscular 374-pound kangaroos once thumped around Australia and New Guinea. ]
However, there remain many, many more species for which no markers currently exist. These include some of the most fascinating and iconic of Australia's megafauna. These include various members of the genus Diprotodon, the largest marsupial genus to have ever existed, and Thylacoleo carnifex, the 'marsupial lion' that emerged roughly 2 million years ago during the late Pleistocene and was the continent's apex predator for millennia.
Like the rest of Australia's megafauna, Thylacoleo carnifex disappeared around 50,000 years ago. Why? No one knows exactly why, and while the leading theory is that humans were to blame–the extinctions of the last megafauna coincide roughly with the arrival of humans in Australia–any new research carries the tantalizing possibility of shedding more light on how these species met their ultimate demise. Douka hopes that new tools like ZooMS might be able to 'help confirm or deny suggestions that early Aboriginals co-existed with megafauna in Australia.'
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
2 days ago
- Yahoo
Five 'high-priority' pathogens discovered entering Australia via airplane toilets
Five high-priority pathogens and superbugs have entered Australia on international flights, an investigation of wastewater in airplane toilets has revealed. The new research, led by the national science agency, CSIRO, confirms that air travel is a key pathway for antimicrobial-resistant bacteria to enter the country. Working with an international team of university scientists, the researchers found superbugs in every one of the 44 samples. Close to a third tested positive for a gene with resistance to last resort antibiotics that had not previously been found in Australia. Dr Warish Ahmed, a principal research scientist at CSIRO, said the research indicates testing aircraft wastewater could be a significant tool for detecting the spread of new diseases. He said the data collected could be particularly important for protecting vulnerable communities. 'The samples could be delivered to labs, and we could simply run PCR tests, looking for antibiotic-resistant genes and bacteria and offer the results in a couple of days,' he told Yahoo News Australia. 'But it would need the collaboration with airlines, university research institutions and public health units to make it happen.' Related: Alarm raised after strange backyard phenomenon worsens in Aussie region Region with highest concentration of resistant microbes Eighteen of the samples taken from flights originating in South Asia had a higher concentration of antibiotic-resistant genes than those from Europe. In many parts of the continent, antibiotics can be purchased over the counter without a prescription, allowing resistance to quickly grow. Other contributors to the variation between parts of Asia and Europe could be water and sanitation, population density, and public health policies, according to lead author Dr Yawen Liu, a visiting scientist at CSIRO from China's Xiamen University. 'By monitoring aircraft wastewater, we can potentially detect and track antibiotic resistance genes before they become established in local environments,' Liu added. 🥣 Disturbing problem caused by placing five common items in dishwasher ☠️ Calls to ban 4,200 chemicals 'of concern' found in common products 😳 Beach walker stumbles up new Australian ocean predator The study began during the Covid-19 pandemic, and the group's testing of aircraft wastewater has now concluded. They found pathogens were present in wastewater despite the use of strong disinfectants in treatment systems. The study was a collaboration between CSIRO, Xiamen University, the University of South Australia and Michigan Technological University. It was published in the journal Microbiology Spectrum. Love Australia's weird and wonderful environment? 🐊🦘😳 Get our new newsletter showcasing the week's best stories.


New York Post
4 days ago
- New York Post
Scientists discover ancient whale with a Pokémon face and a predator bite
Long before whales were majestic, gentle giants, some of their prehistoric ancestors were tiny, weird and feral. A chance discovery of a 25-million-year-old fossil on an Australian beach has allowed paleontologists to identify a rare, entirely new species that could unlock mysteries of whale evolution. Researchers this week officially named Janjucetus dullardi, a cartoonish creature with bulging eyes the size of tennis balls, in the Zoological Journal of the Linnean Society. Unlike today's whales, the juvenile specimen was small enough to fit in a single bed. 4 An illustration depicting Janjucetus dullardi chasing a fish. AP Boasting fiendish teeth and a shark-like snout, however, this oddball of the ocean was nasty, mean and built to hunt. 'It was, let's say, deceptively cute,' said Erich Fitzgerald, senior curator of vertebrate paleontology at Museums Victoria Research Institute, and one of the paper's authors. 'It might have looked for all the world like some weird kind of mash-up between a whale, a seal and a Pokémon but they were very much their own thing.' Extinct species was an odd branch on the whale family tree The rare discovery of the partial skull, including ear bones and teeth, was made in 2019 on a fossil-rich stretch of coast along Australia's Victoria state. Jan Juc Beach, a cradle for some of the weirdest whales in history, is becoming a hotspot for understanding early whale evolution, Fitzgerald said. 4 Ruairidh Duncan examines a tooth and partial fossil skull, at left, in the palaeontology lab at Melbourne Museum in Melbourne, Australia, on Aug. 5, 2025. AP Few family trees seem stranger than that of Janjucetus dullardi, only the fourth species ever identified from a group known as mammalodontids, early whales that lived only during the Oligocene Epoch, about 34 to 23 million years ago. That marked the point about halfway through the known history of whales. The tiny predators, thought to have grown to 10 feet in length, were an early branch on the line that led to today's great baleen whales, such as humpbacks, blues and minkes. But the toothy ancestors with powerful jaws would have looked radically different to any modern species. 'They may have had tiny little nubbins of legs just projecting as stumps from the wall of the body,' said Fitzgerald. That mystery will remain tantalizingly unsolved unless a specimen is uncovered with more of its skeleton intact, which would be something of a miracle. Even the partial skull that allowed the initial identification this week was an astonishing discovery. 4 The partial fossil skull and teeth of Janjucetus dullardi at Museums Victoria in Melbourne MUSEUMS VICTORIA/AFP via Getty Images For an amateur paleontologist, a life-long obsession paid off Janjucetus dullardi was named by researchers after an amateur fossil hunter who doesn't mind its looks in the slightest. 'It's literally been the greatest 24 hours of my life,' said Ross Dullard, who discovered the skull while fossil hunting at Jan Juc Beach. After Wednesday's confirmation of the new species, the school principal walked like a rock star onto campus with 'high fives coming left, right and center,' he said. His friends and family are probably just relieved it's over. 4 Duncan (L) and Palaeontologist Erich Fitzgerald with the partial fossil skull and teeth of Janjucetus dullardi in Melbourne. MUSEUMS VICTORIA/AFP via Getty Images 'That's all they've heard from me for about the last six years,' he said. Dullard was on a regular low-tide hunt at Jan Juc the day he spotted something black protruding from a cliff. Poking it dislodged a tooth. He knew enough to recognize it was unlikely to belong to a dog or a seal. 'I thought, geez, we've got something special here,' he said. Dullard sent photos to Museums Victoria, where Fitzgerald saw them and immediately suspected a new species. Ancient whale finds are rare but significant Confirming the find was another matter. This was the first mammalodontid to be identified in Australia since 2006 and only the third on record in the country. Fossils of sufficient quality, with enough of the right details preserved to confirm uniqueness, aren't common. 'Cetaceans represent a fairly miniscule population of all life,' Fitzgerald said. Millions of years of erosion, scavengers and ocean currents take their toll on whale skeletons too. 'It's only the chosen few, the vast minority of all whales that have ever lived and died in the oceans over millions of years, that actually get preserved as fossils,' he added. Finds such as Janjucetus dullardi can unlock insights into how prehistoric whales ate, moved, behaved — and evolved. Researchers said the discoveries also helped to understand how ancient cetacean species adapted to warmer oceans, as they study how today's marine life might respond to climate change. Meanwhile, Dullard planned to host a fossil party this weekend, featuring cetacean-themed games and whale-shaped treats in jello, to celebrate his nightmare Muppet find, finally confirmed. 'That's taken my concentration for six years,' he said. 'I've had sleepless nights. I've dreamt about this whale.'

5 days ago
This prehistoric whale had razor teeth, bulging eyes and a face only evolution could love
WELLINGTON, New Zealand -- Long before whales were majestic, gentle giants, some of their prehistoric ancestors were tiny, weird and feral. A chance discovery of a 25 million-year-old fossil on an Australian beach has allowed paleontologists to identify a rare, entirely new species that could unlock mysteries of whale evolution. Researchers this week officially named Janjucetus dullardi, a cartoonish creature with bulging eyes the size of tennis balls, in the Zoological Journal of the Linnean Society. Unlike today's whales, the juvenile specimen was small enough to fit in a single bed. Boasting fiendish teeth and a shark-like snout, however, this oddball of the ocean was nasty, mean and built to hunt. 'It was, let's say, deceptively cute,' said Erich Fitzgerald, senior curator of vertebrate paleontology at Museums Victoria Research Institute, and one of the paper's authors. 'It might have looked for all the world like some weird kind of mash-up between a whale, a seal and a Pokémon but they were very much their own thing.' The rare discovery of the partial skull, including ear bones and teeth, was made in 2019 on a fossil-rich stretch of coast along Australia's Victoria state. Jan Juc Beach, a cradle for some of the weirdest whales in history, is becoming a hotspot for understanding early whale evolution, Fitzgerald said. Few family trees seem stranger than that of Janjucetus dullardi, only the fourth species ever identified from a group known as mammalodontids, early whales that lived only during the Oligocene Epoch, about 34 to 23 million years ago. That marked the point about halfway through the known history of whales. The tiny predators, thought to have grown to 3 meters (10 feet) in length, were an early branch on the line that led to today's great baleen whales, such as humpbacks, blues and minkes. But the toothy ancestors with powerful jaws would have looked radically different to any modern species. 'They may have had tiny little nubbins of legs just projecting as stumps from the wall of the body,' said Fitzgerald. That mystery will remain tantalizingly unsolved unless a specimen is uncovered with more of its skeleton intact, which would be something of a miracle. Even the partial skull that allowed the initial identification this week was an astonishing discovery. Janjucetus dullardi was named by researchers after an amateur fossil hunter who doesn't mind its looks in the slightest. 'It's literally been the greatest 24 hours of my life,' said Ross Dullard, who discovered the skull while fossil hunting at Jan Juc Beach. After Wednesday's confirmation of the new species, the school principal walked like a rock star onto campus with 'high fives coming left, right and center,' he said. His friends and family are probably just relieved it's over. 'That's all they've heard from me for about the last six years,' he said. Dullard was on a regular low-tide hunt at Jan Juc the day he spotted something black protruding from a cliff. Poking it dislodged a tooth. He knew enough to recognize it was unlikely to belong to a dog or a seal. 'I thought, geez, we've got something special here,' he said. Dullard sent photos to Museums Victoria, where Fitzgerald saw them and immediately suspected a new species. Confirming the find was another matter. This was the first mammalodontid to be identified in Australia since 2006 and only the third on record in the country. Fossils of sufficient quality, with enough of the right details preserved to confirm uniqueness, aren't common. 'Cetaceans represent a fairly miniscule population of all life,' Fitzgerald said. Millions of years of erosion, scavengers and ocean currents take their toll on whale skeletons too. 'It's only the chosen few, the vast minority of all whales that have ever lived and died in the oceans over millions of years, that actually get preserved as fossils,' he added. Finds such as Janjucetus dullardi can unlock insights into how prehistoric whales ate, moved, behaved — and evolved. Researchers said the discoveries also helped to understand how ancient cetacean species adapted to warmer oceans, as they study how today's marine life might respond to climate change. Meanwhile, Dullard planned to host a fossil party this weekend, featuring cetacean-themed games and whale-shaped treats in jello, to celebrate his nightmare Muppet find, finally confirmed. 'That's taken my concentration for six years,' he said. 'I've had sleepless nights. I've dreamt about this whale.'