logo
Astronomers Confused to Discover That a Bunch of Nearby Galaxies Are Pointing Directly at Us

Astronomers Confused to Discover That a Bunch of Nearby Galaxies Are Pointing Directly at Us

Yahoo27-04-2025

Like how the Earth keeps the Moon bound on a gravitational tether, our nearest galactic neighbor, the Andromeda galaxy (M31), is surrounded by a bunch of tiny satellite galaxies.
But there's something incredibly strange about how these mini realms are arranged, according to a new study published in the journal Nature Astronomy: almost all the satellite galaxies appear on one side of its host, and are pointing right at us — the Milky Way — instead of being randomly distributed.
In other words, it's extremely lopsided. Based on simulations, the odds of this happening are just 0.3 percent, the authors calculate, challenging our assumptions of galactic formation.
"M31 is the only system that we know of that demonstrates such an extreme degree of asymmetry," lead author Kosuke Jamie Kanehisa at the Leibniz Institute for Astrophysics Potsdam in Germany told Space.com.
Our current understanding of cosmology holds that large galaxies form from smaller galaxies that merge together over time. Orchestrating this from the shadows are "haloes" — essentially clusters — of dark matter, the invisible substance thought to account for 85 percent of all mass in the universe, whose gravitational influence helps pull the galaxies together. Since this process is chaotic, some of the dwarf galaxies get left out and are relegated to orbit outside the host galaxy in an arrangement that should be pretty random.
Yet it seems that's not the case with Andromeda. All but one of Andromeda's 37 satellite galaxies sit within 107 degrees of the line pointing at the Milky Way. Stranger still, half of these galaxies orbit within the same plane, like how the planets of our Solar System orbit the Sun.
Evidencing how improbable this is, the astronomers used standard cosmological simulations, which recreate how galaxies form over time, and compared the simulated analogs to observations of Andromeda. Less than 0.3 percent of galaxies similar to Andromeda in the simulations showed comparable asymmetry, the astronomers found, and only one came close to being as extreme.
One explanation is that there could be a great number of dwarf galaxies around Andromeda that we can't see yet, giving us an incomplete picture of the satellites' distribution. The data we have on the satellites we can see may not be accurate, too.
Or perhaps, Kanehisa speculates, there's something unique about Andromeda's evolutionary history.
"The fact that we see M31's satellites in this unstable configuration today — which is strange, to say the least — may point towards many having fallen in recently," Kanehisa told Space.com, "possibly related to the major merger thought to have been experienced by Andromeda around two to three billion years ago."
But the most provocative implication is that the standard cosmological model as we know it needs refining. We have very limited data on satellite galaxies throughout the cosmos, since they are incredibly far away and are outshone by the light of their hosts. Maybe, then, the configuration of Andromeda's dwarf galaxies isn't anomalous at all.
"We can't yet be sure that similar extreme systems don't exist out there, or that such systems would be negligibly rare," Kanehisa told Space.com.
It's too early to draw any hard conclusions, but one thing's for certain: we need more observations and data on not just Andromeda's satellites, but on the satellites of much more distant galaxies as well.
More on space: An AI Identifies Where All Those Planets That Could Host Life Are Hiding

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Scientists puzzled by giant planet detected orbiting tiny star
Scientists puzzled by giant planet detected orbiting tiny star

Yahoo

time2 hours ago

  • Yahoo

Scientists puzzled by giant planet detected orbiting tiny star

By Will Dunham WASHINGTON (Reuters) -Astronomers have spotted a cosmic mismatch that has left them perplexed - a really big planet orbiting a really small star. The discovery defies current understanding of how planets form. The star is only about a fifth the mass of the sun. Stars this size should host small planets akin to Earth and Mars under the leading theories on planetary formation. But the one detected in orbit around this star is much larger - in fact, as big as Saturn, the second-largest planet in our solar system. The star, named TOI-6894, is located roughly 240 light-years from Earth in the constellation Leo. A light-year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km). It is the smallest-known star to host a large planet, about 40% smaller than the two previous record holders. "The question of how such a small star can host such a large planet is one that this discovery raises - and we are yet to answer," said astronomer Edward Bryant of the University of Warwick in England, lead author of the study published on Wednesday in the journal Nature Astronomy. Planets beyond our solar system are called exoplanets. The one orbiting TOI-6894 is a gas giant, like Saturn and Jupiter in our solar system, rather than a rocky planet like Earth. The birth of a planetary system begins with a large cloud of gas and dust - called a molecular cloud - that collapses under its own gravity to form a central star. Leftover material spinning around the star in what is called a protoplanetary disk forms planets. Smaller clouds yield smaller stars, and smaller disks contain less material to form planets. "In small clouds of dust and gas, it's hard to build a giant planet," said exoplanet scientist and study co-author Vincent Van Eylen of University College London's Mullard Space Science Laboratory. "This is because to build a giant planet, you need to quickly build a large planet core and then quickly accrete (accumulate) a lot of gas on top of that core. But there's only so much time to do it before the star starts shining and the disk rapidly disappears. In small stars, we think there's simply not enough mass available to build a giant planet quickly enough before the disk disappears," Van Eylen added. No known planet is larger than its host star, and that is the case here as well, though the two are much closer in size than usual. While the sun's diameter is 10 times larger than our solar system's largest planet Jupiter, TOI-6894's diameter is just 2.5 times greater than its only known planet. The star is a red dwarf, the smallest type of regular star and the most common kind found in the Milky Way galaxy. "Given these stars are very common, there may be many more giant planets in the galaxy than we thought," Bryant said. The star is about 21% the mass of the sun and much dimmer. In fact, the sun is about 250 times more luminous than TOI-6894. "These findings suggest that even the smallest stars in the universe can in some cases form very large planets. That forces us to rethink some of our planet formation models," Van Eylen said. The planet is located about 40 times closer to its star than Earth is to the sun, completing an orbit in approximately three days. Its proximity to the star means the planet's surface is quite hot, though not as hot as gas giants called "hot Jupiters" detected orbiting similarly close to bigger stars. Its diameter is slightly larger than Saturn and a bit smaller than Jupiter, though it is less dense than them. Its mass is 56% that of Saturn and 17% that of Jupiter. The main data used in studying the planet came from NASA's orbiting Transiting Exoplanet Survey Satellite, or TESS, and the European Southern Observatory's Chile-based Very Large Telescope, or VLT. The researchers hope to better understand the planet's composition with observations planned over the next year using the James Webb Space Telescope. "We expect it to have a massive core surrounded by a gaseous envelope made up of predominantly hydrogen and helium gas," Bryant said.

Europe prepares to land rover on the Moon for first time
Europe prepares to land rover on the Moon for first time

Yahoo

time5 hours ago

  • Yahoo

Europe prepares to land rover on the Moon for first time

The first European Moon rover is due to land on the lunar surface on Thursday. Named Tenacious, the rover is less than 2ft long and can carry a payload of just over one pound. Built by the European arm of Japanese lunar exploration company Ispace, it will be controlled by ground staff in Luxembourg, who will be able to drive it at up to four inches per second in near real time, using a video camera mounted on its front panel. Once on the Moon, it will deliver an art project called Moonhouse, a 3in-high model of a typical red Swedish cottage, developed by Mikael Genberg, a Swedish artist. The team hopes to place the house in a location where it can be photographed with the Earth in the background. The rover is also carrying a shovel to collect lunar regolith – moon dust – which will be sold to Nasa for $5,000 (£3,685) under an agreement that will make history as the first off-planet sale of resources. It is the second attempt to land on the Moon by Ispace, after the company's first craft crash-landed on the lunar surface in 2020. An investigation later found that a software glitch had led the spacecraft to believe it was on the surface when it was still several miles from landing. Takeshi Hakamada, the founder of Ispace, said: 'Just over two years ago, Ispace became the first private company in the world to attempt a lunar landing. 'While the mission achieved significant results, we lost communication with the lander just before touchdown. 'Since that time, we have drawn on the experience, using it as motivation to move forward with resolve. We are now at the dawn of our next attempt to make history.' The rover is being carried in a lander spacecraft called Resilience which launched in January on a SpaceX Falcon 9 rocket and entered lunar orbit on May 6. It is due to land on the Mare Frigoris region of the northern hemisphere of the near side of the Moon at 19:17 BST. The team is hoping that the area will be flat enough to allow the rover to trundle around, although its sturdy wheels should help it navigate unexpectedly rough terrain. Sophia Casanova, a senior lunar scientist at Ispace, said: 'The mission will be going to a really exciting region on the Moon. We are hoping to encounter a range of really interesting geologic features, and in particular with our Tenacious rover we will be exploring the lunar regolith, which is the soil-like material that covers the lunar surface. 'Understanding the characteristics of this material will help us not only understand the geology of the Moon but also help us understand the design of our future rovers.' She added: 'The Tenacious rover may encounter an array of features that may pose a hazard. Things like steep slopes, highly fluffy or compacted material, or small craters and boulders. However, these features represent really important characteristics for us to evaluate and our rover was designed with these operational conditions in mind.' The lander is also carrying several payloads including a water electrolyser for splitting water into hydrogen and oxygen atoms, as well as experiments looking at food production and space radiation. Kathryn Hadler, the director of the European Space Resources Innovation Centre, said: 'There are many resources of interest on the Moon, we can use the oxygen and metals present on the dust that coats the surface of the Moon, and we are also interested in the water ice that is present in the permanently shadowed reasons. 'This is important because we can use these resources to support human life, we can use it for rocket propellant, and this will allow us to support a future of sustainable space exploration. 'We need to develop the technologies to allow us to use these resources in space. It will allow us to understand how the regolith behaves when it is scooped and handled. And this is critical to develop technology for future space missions.' Ispace has previously said that its goal is to kick off the lunar economy, and it has several more missions planned, including working on two more landers. Broaden your horizons with award-winning British journalism. Try The Telegraph free for 1 month with unlimited access to our award-winning website, exclusive app, money-saving offers and more.

Massive planet discovered orbiting tiny star, puzzling scientists
Massive planet discovered orbiting tiny star, puzzling scientists

Yahoo

time6 hours ago

  • Yahoo

Massive planet discovered orbiting tiny star, puzzling scientists

Astronomers announced Wednesday they have discovered a massive planet orbiting a tiny star, a bizarre pairing that has stumped scientists. Most of the stars across the Milky Way are small red dwarfs like TOI-6894, which has only 20% the mass of our sun. It had not been thought possible that such puny, weak stars could provide the conditions needed to form and host huge planets. But an international team of astronomers have detected the unmistakable signature of a gas giant planet orbiting the undersized TOI-6894, according to a study in the journal Nature Astronomy. This makes the star the smallest star yet known to host a gas giant. The planet has a slightly larger radius than Saturn, but only half its mass. It orbits its star in a little over three days. The astronomers discovered the planet when searching through more than 91,000 low-mass red dwarfs observed by NASA's TESS space telescope. Its existence was then confirmed by ground-based telescopes, including Chile's Very Large Telescope. "The fact that this star hosts a giant planet has big implications for the total number of giant planets we estimate exist in our galaxy," study co-author Daniel Bayliss of the UK's Warwick University said in a statement. Another co-author, Vincent Van Eylen, of University College London, said it was an "intriguing discovery." "We don't really understand how a star with so little mass can form such a massive planet!" he said. "This is one of the goals of the search for more exoplanets. By finding planetary systems different from our solar system, we can test our models and better understand how our own solar system formed." Planet is unusually cold The most prominent theory for how planets form is called core accretion. The process begins when a ring of gas and dust — called a protoplanetary disc — which surrounds a newly formed star builds up into a planetary core. This core attracts more gas that forms an atmosphere, eventually snowballing into a gas giant. Under this theory, it is difficult for low-mass stars to host giant planets because there is not enough gas and dust to begin building a core in the first place. A rival theory proposes that these planets instead form when their protoplanetary disc becomes gravitationally unstable and breaks up, with the collapsing gas and dust forming a planet. However neither theory seems to explain the existence of the newly discovered planet, TOI-6894b, the researchers said. The planet also interests scientists because it is strangely cold. Most of the gas giants discovered outside our solar system so far have been what are known as "hot Jupiters," where temperatures soar well over 1,000 degrees Celsius. But the newly discovered planet appears to be under 150C, the researchers said. "Temperatures are low enough that atmospheric observations could even show us ammonia, which would be the first time it is found in an exoplanet atmosphere," said study co-author Amaury Triaud of Birmingham University. The James Webb space telescope is scheduled to turn its powerful gaze toward the planet in the next year, which could help uncover some more mysteries of this strange planet. Recent cosmic discoveries The spotting of the giant planet orbiting the undersized star marks the latest in a string of recent celestial discoveries. Last month, a U.S.-based trio hunting the elusive "Planet Nine" said they instead stumbled on what appears to be a new dwarf planet in the solar system's outer reaches. Named 2017 OF201, the new object is roughly 430 miles across, according to a preprint study, making it three times smaller than Pluto. Also in May, an international team reported that a newly found celestial object — perhaps a star, pair of stars or something else entirely — is emitting X-rays around the same time it's shooting out radio waves. Meanwhile, scientists announced recently that a new planetarium show about the Milky Way helped them unlock one of the solar system's many secrets. Experts at the American Museum of Natural History in New York were fine-tuning a scene about the Oort Cloud that's far beyond Pluto. Scientists have never glimpsed this region, but when museum experts projected their scene onto the planetarium dome, created using simulation data, they saw a spiral shape. Scientists had long thought the Oort Cloud was shaped like a sphere or flattened shell, warped by the push and pull of other planets and the Milky Way itself. The planetarium show hinted that a more complex shape could lie peek: Where is Jermain Charlo? Baldwin grills McMahon on unallocated funds for students, schools, approved by Congress Hegseth orders Navy to rename USNS Harvey Milk, Jeffries calls it "a complete and total disgrace"

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store