
Earth Will Lose Its Oxygen: Scientists Warn Of A Rapid Countdown
A recent study reveals that Earth's oxygen-rich atmosphere, vital for complex life, is expected to last approximately one billion more years. Increasing solar radiation will reduce atmospheric carbon dioxide, impairing photosynthesis and leading to a sharp decline in oxygen levels.
The study that was published in Nature Geoscience said that this deoxygenation could occur rapidly, rendering Earth inhospitable to most life forms. The findings also suggest oxygen may not be a permanent biosignature on habitable planets, impacting the search for extraterrestrial life.
"For many years, the lifespan of Earth's biosphere has been discussed based on scientific knowledge about the steady brightening of the sun and the global carbonate-silicate geochemical cycle. One of the corollaries of such a theoretical framework is a continuous decline in atmospheric CO2 levels and global warming on geological timescales. Indeed, it is generally thought that Earth's biosphere will come to an end in the next 2 billion years due to the combination of overheating and CO2 scarcity for photosynthesis. If true, one can expect that atmospheric O2 levels will also eventually decrease in the distant future. However, it remains unclear exactly when and how this will occur," environmental scientist Kazumi Ozaki from Toho University in Japan said when the study was published.
To examine how Earth's atmosphere will evolve in the future, Ozaki and Christopher Reinhard, Associate Professor at Georgia Institute of Technology, constructed an Earth system model which simulates climate and biogeochemical processes. Because modelling future Earth evolution intrinsically has uncertainties in geological and biological evolutions, a stochastic approach was adopted, enabling the researchers to obtain a probabilistic assessment of the lifespan of an oxygenated atmosphere. Ozaki ran the model more than 400 thousand times, varying the model parameters, and found that Earth's oxygen-rich atmosphere will probably persist for another one billion years before rapid deoxygenation renders the atmosphere reminiscent of early Earth before the Great Oxidation Event around 2.5 billion years ago.
"The atmosphere after the great deoxygenation is characterised by elevated methane, low levels of CO2, and no ozone layer. The Earth system will probably be a world of anaerobic life forms," says Ozaki.
Earth's oxygen-rich atmosphere represents an important sign of life that can be remotely detected. However, this study suggests that Earth's oxygenated atmosphere would not be a permanent feature and that the oxygen-rich atmosphere might only be possible for 20-30% of the Earth's entire history as an inhabited planet. Oxygen (and photochemical byproduct, ozone) is the most accepted biosignature for the search for life on exoplanets, but if we can generalise this insight to Earth-like planets, then scientists need to consider additional biosignatures applicable to weakly oxygenated and anoxic worlds in the search for life beyond our solar system.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Economic Times
8 hours ago
- Economic Times
How will Earth take its last breath? New research gives a detailed description of how life on planet will meet its end
A new study, employing NASA's planetary modeling, predicts Earth's oxygen will vanish in roughly one billion years, much sooner than previously thought. Led by Toho University, the research highlights the sun's aging process as a key factor, causing increased water evaporation, rising temperatures, and a failing carbon cycle. Tired of too many ads? Remove Ads What has the research revealed? Tired of too many ads? Remove Ads Researchers shorten Earth's lifeline A groundbreaking study by researchers at Toho University, using NASA's advanced planetary modeling, has predicted a major shift in Earth's atmosphere that could make life as we know it in Nature Geoscience, the research suggests that Earth's oxygen could vanish in about one billion years—shedding new light on the long-term evolution of our planet's team ran 400,000 simulations to model how Earth's atmosphere might change as the sun grows hotter with age. While the predicted changes lie far in the future, the findings offer critical insights into planetary science and the eventual fate of Earth's study titled "The Future Lifespan of Earth's Oxygenated Atmosphere" explores a future in which oxygen becomes increasingly scarce due to natural changes in the planet's systems. Led by Kazumi Ozaki, an assistant professor at Toho University in Tokyo, the research examines the geological and astronomical factors influencing long-term shifts in Earth's role of the Sun One of the core factors leading to oxygen depletion is the sun's inevitable aging process. As the sun ages, it will gradually become hotter and brighter. This increase in solar radiation will significantly impact Earth's climate, leading to a series of irreversible changes:As temperatures rise, Earth's water bodies will evaporate more rapidly, increasing atmospheric water vapor levels. This warming will also cause surface temperatures to escalate, gradually creating conditions unsuitable for sustaining life. The heat will disrupt the carbon cycle—a crucial process that regulates atmospheric carbon dioxide—weakening its ability to maintain balance. As a result, plant life will begin to die off, stopping the production of oxygen through photosynthesis. Over time, these cascading effects will lead to a dramatic loss of oxygen in Earth's atmosphere, rendering the planet increasingly research revealed that as the carbon cycle deteriorates, the atmosphere will revert to a composition reminiscent of early Earth, characterized by high levels of methane and low oxygen. This transformation mirrors the state before the Great Oxidation Event—a period when Earth's atmosphere became rich in oxygen due to the proliferation of photosynthetic scientific models suggested that Earth's biosphere would last up to two billion years, primarily due to overheating and the eventual depletion of CO₂ necessary for photosynthesis. However, this new research narrows the timeframe, suggesting a much earlier end to oxygen Ozaki emphasized that while the eventual demise of Earth's biosphere was acknowledged, pinpointing the timing and the precise process of deoxygenation remained elusive. This study, using advanced supercomputer simulations, provides a clearer understanding by simulating numerous potential scenarios.


Time of India
10 hours ago
- Time of India
How will Earth take its last breath? New research gives a detailed description of how life on planet will meet its end
A groundbreaking study by researchers at Toho University, using NASA's advanced planetary modeling, has predicted a major shift in Earth's atmosphere that could make life as we know it impossible. Published in Nature Geoscience, the research suggests that Earth's oxygen could vanish in about one billion years—shedding new light on the long-term evolution of our planet's atmosphere. The team ran 400,000 simulations to model how Earth's atmosphere might change as the sun grows hotter with age. While the predicted changes lie far in the future, the findings offer critical insights into planetary science and the eventual fate of Earth's biosphere. by Taboola by Taboola Sponsored Links Sponsored Links Promoted Links Promoted Links You May Like Villa For Sale in Dubai Might Surprise You Villas in Dubai | Search ads Learn More The study titled "The Future Lifespan of Earth's Oxygenated Atmosphere" explores a future in which oxygen becomes increasingly scarce due to natural changes in the planet's systems. Led by Kazumi Ozaki, an assistant professor at Toho University in Tokyo, the research examines the geological and astronomical factors influencing long-term shifts in Earth's atmosphere. What has the research revealed? The role of the Sun One of the core factors leading to oxygen depletion is the sun's inevitable aging process. As the sun ages, it will gradually become hotter and brighter. This increase in solar radiation will significantly impact Earth's climate, leading to a series of irreversible changes: Live Events As temperatures rise, Earth's water bodies will evaporate more rapidly, increasing atmospheric water vapor levels. This warming will also cause surface temperatures to escalate, gradually creating conditions unsuitable for sustaining life. The heat will disrupt the carbon cycle—a crucial process that regulates atmospheric carbon dioxide—weakening its ability to maintain balance. As a result, plant life will begin to die off, stopping the production of oxygen through photosynthesis. Over time, these cascading effects will lead to a dramatic loss of oxygen in Earth's atmosphere, rendering the planet increasingly uninhabitable. The research revealed that as the carbon cycle deteriorates, the atmosphere will revert to a composition reminiscent of early Earth, characterized by high levels of methane and low oxygen. This transformation mirrors the state before the Great Oxidation Event—a period when Earth's atmosphere became rich in oxygen due to the proliferation of photosynthetic organisms. Researchers shorten Earth's lifeline Earlier scientific models suggested that Earth's biosphere would last up to two billion years, primarily due to overheating and the eventual depletion of CO₂ necessary for photosynthesis. However, this new research narrows the timeframe, suggesting a much earlier end to oxygen production. Kazumi Ozaki emphasized that while the eventual demise of Earth's biosphere was acknowledged, pinpointing the timing and the precise process of deoxygenation remained elusive. This study, using advanced supercomputer simulations, provides a clearer understanding by simulating numerous potential scenarios.


NDTV
14 hours ago
- NDTV
Discovery Of Small Star Giving Birth To Huge Planet Leaves Scientists Puzzled
Astronomers were left stunned after they found a giant planet, about the same size as Saturn, orbiting a really small red dwarf star, a study published in Nature Astronomy revealed. The star, named TOI-6894, is only about a fifth the mass of the Sun. The observation is quite intriguing, as notable planet formation theories suggest that it shouldn't have happened, as small stars should host small planets similar to Earth and Mars, not big ones. Astronomers believe that small stars are not expected to have suitable conditions for planet formation. TOI-6894 is roughly 240 light-years from Earth in the constellation Leo. It is the smallest-known star to host a large planet. Meanwhile, the planet, called TOI-6894b, is a gas giant, like the Milky Way has Saturn and Jupiter. The planet is completing an orbit in approximately three days, as it is about 40 times closer to its star as compared to Earth is to the Sun. Its location suggests that TOI-6894b's surface must be hot. In size, it is bigger than Saturn but slightly smaller than Jupiter. In mass, it is 56% that of Saturn and 17% that of Jupiter. "I was very excited by this discovery. I originally searched through TESS observations of more than 91,000 low-mass red-dwarf stars looking for giant planets," says astrophysicist Edward Bryant of the University of Warwick in the UK, who led the international research team. "Then, using observations taken with one of the world's largest telescopes, ESO's VLT, I discovered TOI-6894b, a giant planet transiting the lowest mass star known to date to host such a planet. We did not expect planets like TOI-6894b to be able to form around stars this low-mass. This discovery will be a cornerstone for understanding the extremes of giant planet formation," Bryant said. Bryant added, "The question of how such a small star can host such a large planet is one that this discovery raises - and we are yet to answer." The star and planet system was discovered during an investigation of NASA's TESS (Transiting Exoplanet Survey Satellite) and the European Southern Observatory's Chile-based Very Large Telescope (VLT). "In small clouds of dust and gas, it's hard to build a giant planet," said exoplanet scientist and study co-author Vincent Van Eylen of University College London's Mullard Space Science Laboratory. "This is because to build a giant planet, you need to quickly build a large planet core and then quickly accrete (accumulate) a lot of gas on top of that core. But there's only so much time to do it before the star starts shining and the disk rapidly disappears. In small stars, we think there's simply not enough mass available to build a giant planet quickly enough before the disk disappears," Van Eylen added. How are planets formed? The formation process starts with the Giant Molecular Cloud, in which a giant cloud of gas and dust collapses under its own gravity. After that, the centre of the cloud becomes a protostar, which eventually becomes a star. Then a disk of gas and dust forms around the protostar. The small particles in the disk stick together, growing into larger bodies called planetesimals. Then the collision and merger of Planetesimals happen, forming larger planetary embryos. The embryos undergo differentiation, where heavier elements sink to the centre.