
لأول مرة.. علماء يلتقطون صورة "للصوت الثاني"
إذا كنت تملك خزانا من مادة تعرف باسم "السائل الفائق"، وقمت بتسخين أحد طرفيه ليقترب من الغليان، فقد تلاحظ أمرا غريبا، إذ يبدأ الطرف الآخر في السخونة، رغم أن السائل يبدو ساكنا تماما، ثم تعود الحرارة إلى الطرف الأول في حركة متبادلة، وكأن الحرارة ترتد ذهابا وإيابا، بينما السائل لا يتحرك على الإطلاق.
هذا النوع غير المعتاد من انتقال الحرارة، الذي حير العلماء لعقود منذ أن تنبأ به الفيزيائي لازلو تيزا عام 1938، لا يحدث في السوائل العادية، بل في حالات فيزيائية نادرة جدا، تعرف باسم "السوائل الفائقة"، حيث تتزاوج الذرات وتتحرك دون احتكاك تقريبا، مما يغير تماما الطريقة التي تنتقل بها الحرارة.
من أمثلة هذه المواد، الهليوم-4 السائل، الذي يتحول إلى سائل فائق عند تبريده إلى أقل من 2.17 كلفن، والليثيوم-6 والصوديوم، وهي غازات ذرية يمكن تحويلها إلى الحالة الفائقة باستخدام تقنيات تبريد فائقة الدقة تعتمد على الليزر، وتجرى عادة في المختبرات المتخصصة.
عندما تُبرد هذه المواد إلى درجات حرارة قريبة للغاية من الصفر المطلق (نحو سالب 273.15 درجة مئوية)، فإن سلوكها يتغير كليا، فالسائل الفائق يمكنه أن يتدفق دون أي مقاومة أو احتكاك، وإذا وضعته في أنبوب دائري، فسيظل يدور فيه إلى الأبد دون أن يتوقف، كما يمكنه تسلق جدران الحاوية والخروج منها دون أي قوة خارجية، وهو أمر مستحيل في السوائل العادية.
أما الخاصية الأبرز، فهي أن الحرارة في هذه الحالة لا تنتقل عشوائيا، بل تسير على هيئة موجة، مثل الصوت تماما، وهذا ما يُعرف علميا باسم "الصوت الثاني" ، وهي ظاهرة لطالما حاول العلماء رصدها بصريا، لكن دون نجاح يذكر.
ماذا فعل الباحثون؟
والمشكلة التي حالت دون ذلك تتمثل في أن الغازات فائقة البرودة لا تُصدر إشعاعا حراريا يمكن تتبعه بالأشعة تحت الحمراء، كما تفعل المواد العادية، ولهذا، طور باحثون من "معهد ماساتشوستس للتكنولوجيا" طريقة جديدة تم الإعلان عنها في دورية "ساينس"، تعتمد على مراقبة ذبذبات الذرات، بدلا من حرارة الأشعة تحت الحمراء.
وفي قلب مختبر بالغ البرودة، استخدم الفريق ذرات الليثيوم-6، ووجدوا أنه عندما تسخن هذه الذرات قليلا، تبدأ بالاهتزاز بترددات أعلى، وباستخدام موجات راديوية دقيقة، تمكن العلماء من "جعل الذرات تهتز" بطريقة واضحة يمكن تتبعها، وكأنها تومض تحت المجهر، كاشفة عن رحلتها الحرارية الفريدة.
ولتقريب الصورة، يمكن تخيل أن كل ذرة تشبه وترا صغيرا في آلة موسيقية، وعندما تكون باردة، تهتز ببطء، وعندما تسخن، تهتز بسرعة، ومن خلال ضبط الموجات الراديوية على ترددات هذه الاهتزازات ذاتها، تمكن الباحثون من جعل الذرات "تعزف" بحرارة، مظهرة حركة الحرارة بشكل مرئي.
وهذا الرنين مكن العلماء من تصوير حركة الحرارة داخل السائل الفائق إطارا تلو الآخر، كما لو كانوا يصورون فيلما بطيئا، لكنهم لم يروا الحرارة تتحرك بالطريقة التقليدية، بل على هيئة موجة صوتية ترتد بين الجدران، كما لو كانت الحرارة نفسها "تتحدث".
تطبيقات عملية للاكتشاف
ويقول البروفيسور مارتن زويرلاين، المشرف على الدراسة، في بيان أصدره معهد ماساتشوستس للتكنولوجيا: "لأول مرة، يمكننا رؤية هذا الانتقال الحراري الغريب وتوثيقه صورة بصورة، فقد رأينا كيف تتحول المادة من سائل عادي إلى سائل فائق تُعامل فيه الحرارة كما لو كانت صوتا يرتد بين الجدران".
ويضيف أن أهمية هذا الاكتشاف لا تقتصر على الجانب النظري، بل قد تفتح آفاقا جديدة لفهم سلوك أكثر الكيانات غرابة في الكون، مثل النجوم النيوترونية فائقة الكثافة، أو المواد الخارقة التي تنقل الكهرباء دون فقدان للطاقة، وهو الحلم الذي يسعى العلماء لتحقيقه منذ عقود من أجل ثورة في عالم الطاقة النظيفة".
ويختم بالقول: "ما نرصده هنا في ذرات أخف من الهواء بمليون مرة، يشبه إلى حد كبير سلوك الإلكترونات في الموصلات فائقة التوصيل، أو حتى النيوترونات في قلب نجم نيوتروني، فلدينا الآن نافذة نادرة تسمح لنا بقياس سلوك الحرارة بدقة لم تكن ممكنة من قبل".
وهكذا، فإن ما أنجزه هؤلاء الباحثون لا يعيد تعريف انتقال الحرارة فحسب، بل يفتح الباب لفهمها كظاهرة ديناميكية، نابضة، وربما كما يقول البعض، كـ"لغة خفية" تتردد داخل أعماق المادة.
هاشتاغز

جرب ميزات الذكاء الاصطناعي لدينا
اكتشف ما يمكن أن يفعله Daily8 AI من أجلك:
التعليقات
لا يوجد تعليقات بعد...
أخبار ذات صلة


جريدة الوطن
منذ 2 أيام
- جريدة الوطن
ثورة في تصنيع البطاريات
أعلن فريق من علماء جامعة بطرسبورغ الروسية عن تطوير تقنية جديدة لتصنيع بطاريات من بوليمر موصل للتيار الكهربائي، معزز بجزيئات الهيدروكينون، توفر خصائص أداء مماثلة لبطاريات الليثيوم أيون المستخدمة على نطاق واسع في الأجهزة الذكية. وأوضح الباحثون أن المادة الجديدة تتيح سعة تخزين تتراوح بين 85 و112 مللي أمبير/ ساعة لكل غرام، مع كفاءة في الشحن والتفريغ تصل إلى 99 بالمائة، ما يضاهي أداء البطاريات التقليدية، مع إمكانات نظرية تتجاوز 200 مللي أمبير/ساعة. وقال البروفيسور أوليغ ليفين، من قسم الكيمياء الكهربائية بالجامعة، إن التقنية تعتمد على استغلال جزيئات الهيدروكينون كـ«مراكمات شحنة» داخل البوليمر، مشيرا إلى أن هذه البطاريات قد تمهد الطريق لحلول أكثر أمانا واستدامة في مجالات تخزين الطاقة.


الجزيرة
منذ 3 أيام
- الجزيرة
لأول مرة.. علماء يلتقطون صورة "للصوت الثاني"
إذا كنت تملك خزانا من مادة تعرف باسم "السائل الفائق"، وقمت بتسخين أحد طرفيه ليقترب من الغليان، فقد تلاحظ أمرا غريبا، إذ يبدأ الطرف الآخر في السخونة، رغم أن السائل يبدو ساكنا تماما، ثم تعود الحرارة إلى الطرف الأول في حركة متبادلة، وكأن الحرارة ترتد ذهابا وإيابا، بينما السائل لا يتحرك على الإطلاق. هذا النوع غير المعتاد من انتقال الحرارة، الذي حير العلماء لعقود منذ أن تنبأ به الفيزيائي لازلو تيزا عام 1938، لا يحدث في السوائل العادية، بل في حالات فيزيائية نادرة جدا، تعرف باسم "السوائل الفائقة"، حيث تتزاوج الذرات وتتحرك دون احتكاك تقريبا، مما يغير تماما الطريقة التي تنتقل بها الحرارة. من أمثلة هذه المواد، الهليوم-4 السائل، الذي يتحول إلى سائل فائق عند تبريده إلى أقل من 2.17 كلفن، والليثيوم-6 والصوديوم، وهي غازات ذرية يمكن تحويلها إلى الحالة الفائقة باستخدام تقنيات تبريد فائقة الدقة تعتمد على الليزر، وتجرى عادة في المختبرات المتخصصة. عندما تُبرد هذه المواد إلى درجات حرارة قريبة للغاية من الصفر المطلق (نحو سالب 273.15 درجة مئوية)، فإن سلوكها يتغير كليا، فالسائل الفائق يمكنه أن يتدفق دون أي مقاومة أو احتكاك، وإذا وضعته في أنبوب دائري، فسيظل يدور فيه إلى الأبد دون أن يتوقف، كما يمكنه تسلق جدران الحاوية والخروج منها دون أي قوة خارجية، وهو أمر مستحيل في السوائل العادية. أما الخاصية الأبرز، فهي أن الحرارة في هذه الحالة لا تنتقل عشوائيا، بل تسير على هيئة موجة، مثل الصوت تماما، وهذا ما يُعرف علميا باسم "الصوت الثاني" ، وهي ظاهرة لطالما حاول العلماء رصدها بصريا، لكن دون نجاح يذكر. ماذا فعل الباحثون؟ والمشكلة التي حالت دون ذلك تتمثل في أن الغازات فائقة البرودة لا تُصدر إشعاعا حراريا يمكن تتبعه بالأشعة تحت الحمراء، كما تفعل المواد العادية، ولهذا، طور باحثون من "معهد ماساتشوستس للتكنولوجيا" طريقة جديدة تم الإعلان عنها في دورية "ساينس"، تعتمد على مراقبة ذبذبات الذرات، بدلا من حرارة الأشعة تحت الحمراء. وفي قلب مختبر بالغ البرودة، استخدم الفريق ذرات الليثيوم-6، ووجدوا أنه عندما تسخن هذه الذرات قليلا، تبدأ بالاهتزاز بترددات أعلى، وباستخدام موجات راديوية دقيقة، تمكن العلماء من "جعل الذرات تهتز" بطريقة واضحة يمكن تتبعها، وكأنها تومض تحت المجهر، كاشفة عن رحلتها الحرارية الفريدة. ولتقريب الصورة، يمكن تخيل أن كل ذرة تشبه وترا صغيرا في آلة موسيقية، وعندما تكون باردة، تهتز ببطء، وعندما تسخن، تهتز بسرعة، ومن خلال ضبط الموجات الراديوية على ترددات هذه الاهتزازات ذاتها، تمكن الباحثون من جعل الذرات "تعزف" بحرارة، مظهرة حركة الحرارة بشكل مرئي. وهذا الرنين مكن العلماء من تصوير حركة الحرارة داخل السائل الفائق إطارا تلو الآخر، كما لو كانوا يصورون فيلما بطيئا، لكنهم لم يروا الحرارة تتحرك بالطريقة التقليدية، بل على هيئة موجة صوتية ترتد بين الجدران، كما لو كانت الحرارة نفسها "تتحدث". تطبيقات عملية للاكتشاف ويقول البروفيسور مارتن زويرلاين، المشرف على الدراسة، في بيان أصدره معهد ماساتشوستس للتكنولوجيا: "لأول مرة، يمكننا رؤية هذا الانتقال الحراري الغريب وتوثيقه صورة بصورة، فقد رأينا كيف تتحول المادة من سائل عادي إلى سائل فائق تُعامل فيه الحرارة كما لو كانت صوتا يرتد بين الجدران". ويضيف أن أهمية هذا الاكتشاف لا تقتصر على الجانب النظري، بل قد تفتح آفاقا جديدة لفهم سلوك أكثر الكيانات غرابة في الكون، مثل النجوم النيوترونية فائقة الكثافة، أو المواد الخارقة التي تنقل الكهرباء دون فقدان للطاقة، وهو الحلم الذي يسعى العلماء لتحقيقه منذ عقود من أجل ثورة في عالم الطاقة النظيفة". ويختم بالقول: "ما نرصده هنا في ذرات أخف من الهواء بمليون مرة، يشبه إلى حد كبير سلوك الإلكترونات في الموصلات فائقة التوصيل، أو حتى النيوترونات في قلب نجم نيوتروني، فلدينا الآن نافذة نادرة تسمح لنا بقياس سلوك الحرارة بدقة لم تكن ممكنة من قبل". وهكذا، فإن ما أنجزه هؤلاء الباحثون لا يعيد تعريف انتقال الحرارة فحسب، بل يفتح الباب لفهمها كظاهرة ديناميكية، نابضة، وربما كما يقول البعض، كـ"لغة خفية" تتردد داخل أعماق المادة.


الجزيرة
منذ 3 أيام
- الجزيرة
الخلايا النجمية قد تفسر سعة التخزين الهائلة للدماغ البشري
طرح باحثون فرضية جديدة حول كيفية مساهمة الخلايا النجمية – وهي فئة من خلايا الدماغ – في تخزين الذاكرة. ومن شأن الفرضية الجديدة أن تساعد في تفسير سعة التخزين الهائلة للدماغ، والتي تعد أكبر بكثير مما يتوقع من الخلايا العصبية وحدها. وأجرى الدراسة باحثون من معهد ماساتشوستس للتكنولوجيا في الولايات المتحدة، ونشرت نتائجها في مجلة وقائع الأكاديمية الوطنية للعلوم (Proceedings of the National Academy of Sciences) في 23 مايو/ أيار الماضي، وكتب عنها موقع يوريك أليرت. يقول جان جاك سلوتين، أستاذ الهندسة الميكانيكية وعلوم الدماغ والإدراك في معهد ماساتشوستس للتكنولوجيا، وأحد مؤلفي الدراسة: "في البداية، كان يعتقد أن الخلايا النجمية تقوم فقط بتنظيف محيط الخلايا العصبية، لكن لا يوجد سبب محدد يمنع تطور وظائفها؛ فبما أن كل خلية نجمية يمكنها التواصل مع مئات الآلاف من نقاط الاشتباك العصبي، فقد يكون من المنطقي أن تستخدم أيضا في وظائف حسابية". وتعرف نقاط الاشتباك العصبي على أنها النقاط التي تتفاعل فيها خليتان عصبيتان مع بعضهما البعض، وهي مواقع لنقل الاشارات من الخلية العصبية قبل المشبك إلى الخلية العصبية بعد المشبك. يحتوي الدماغ البشري على حوالي 86 مليار خلية عصبية. وتطلق هذه الخلايا إشارات كهربائية تساعد الدماغ على تخزين الذكريات وإرسال المعلومات والأوامر في جميع أنحاء الدماغ والجهاز العصبي. يحتوي الدماغ أيضا على مليارات الخلايا النجمية، وهي خلايا على شكل نجمة ذات امتدادات طويلة تمكّنها من التفاعل مع ملايين الخلايا العصبية. وعلى الرغم من الاعتقاد السائد منذ فترة طويلة بأنها خلايا داعمة في المقام الأول، إلا أن دراسات حديثة أشارت إلى أن الخلايا النجمية قد تلعب دورا في تخزين الذاكرة والوظائف الإدراكية الأخرى. سعة الذاكرة تؤدي الخلايا النجمية مجموعة متنوعة من وظائف الدعم في الدماغ: فهي تنظف مخلفات الخلايا، وتوفر العناصر الغذائية للخلايا العصبية، وتساعد في ضمان إمداد الدم الكافي. ترسل الخلايا النجمية أيضا العديد من المجسات الرفيعة، المعروفة باسم "الزوائد"، والتي يمكن أن يلتف كل منها حول مشبك عصبي واحد لتكوين مشبك ثلاثي الأجزاء. خلال العامين الماضيين، أظهر علماء الأعصاب أنه في حال تعطل الروابط بين الخلايا النجمية والخلايا العصبية في الحصين – جزء من الدماغ يلعب دورا أساسيا في الذاكرة وتكوينها – فإن تخزين الذاكرة واسترجاعها يتأثران. وعلى عكس الخلايا العصبية، لا تستطيع الخلايا النجمية إطلاق جهود الفعل (action potentials)، وهي النبضات الكهربائية التي تحمل المعلومات في جميع أنحاء الدماغ، ولكن يمكنها استخدام إشارات الكالسيوم للتواصل مع الخلايا النجمية الأخرى. على مدار العقود القليلة الماضية، ومع تحسن دقة تصوير الكالسيوم، وجد الباحثون أن إشارات الكالسيوم تسمح أيضا للخلايا النجمية بتنسيق نشاطها مع الخلايا العصبية في المشابك العصبية التي ترتبط بها. تشير هذه الدراسات إلى أن الخلايا النجمية يمكنها اكتشاف النشاط العصبي، مما يدفعها إلى تغيير مستويات الكالسيوم الخاصة بها، وقد تحفّز هذه التغييرات الخلايا النجمية على إطلاق نواقل دبقيّة – جزيئات إشارة تشبه النواقل العصبية – في المشبك العصبي. يقول يقول ليو كوزاتشكوف من قسم علوم الدماغ والإدراك، معهد ماساتشوستس للتكنولوجيا والباحث المشارك في الدراسة: "هناك حلقة مغلقة بين إشارات الخلايا العصبية وإشارات الخلايا النجمية إلى الخلايا العصبية، الأمر غير المعروف تحديدا هو نوع الحسابات التي يمكن للخلايا النجمية إجراؤها بالمعلومات التي تستشعرها من الخلايا العصبية". الذاكرة والمشابك العصبية شرع فريق معهد ماساتشوستس للتكنولوجيا في نمذجة ما قد تفعله هذه الروابط وكيف يمكن أن تساهم في تخزين الذاكرة، ويعتمد نموذجهم على شبكات هوبفيلد، وهي نوع من الشبكات العصبية التي يمكنها تخزين الأنماط واستدعاؤها. تستخدم شبكات هوبفيلد، التي طوّرت في الأصل على يد جون هوبفيلد وشون إيتشي أماري في سبعينيات وثمانينيات القرن الماضي، غالبا لنمذجة الدماغ، ولكن ثبت أن هذه الشبكات لا تستطيع تخزين معلومات كافية لمراعاة سعة الذاكرة الهائلة للدماغ البشري، وطور باحثون نسخة أحدث ومعدَّلة من شبكة هوبفيلد، تعرف باسم الذاكرة الترابطية الكثيفة، تخزِّن معلومات أكثر بكثير من خلال ترتيب أعلى من الاقترانات بين أكثر من خليتين عصبيتين، ولكن ليس من الواضح كيف يمكن للدماغ تنفيذ هذه الاقترانات متعددة الخلايا العصبية في مشبك افتراضي، لأن المشابك التقليدية لا تربط سوى خليتين عصبيتين: خلية قبل المشبك وخلية بعد المشبك، وهنا يأتي دور الخلايا النجمية. يقول ديمتري كروتوف الباحث المشارك من معهد ماساتشوستس للتكنولوجيا/آلات الأعمال الدولية، مختبر واتسون للذكاء الاصطناعي، ماساتشوستس، الولايات المتحدة: "إذا كانت لديك شبكة من الخلايا العصبية، والتي تترابط في أزواج، فلن يكون هناك سوى قدر ضئيل جدا من المعلومات التي يمكنك ترميزها في تلك الشبكات". وأضاف:" لبناء ذكريات ارتباطية كثيفة، نحتاج إلى ربط أكثر من خليتين عصبيتين. ولأن خلية نجمية واحدة قادرة على الاتصال بالعديد من الخلايا العصبية، والعديد من المشابك العصبية، فمن اللافت افتراض وجود عملية نقل معلومات بين المشابك العصبية بوساطة هذه الخلية. كان هذا هو الإلهام الأكبر لنا لدراسة الخلايا النجمية، ودفعنا إلى التفكير في كيفية بناء ذكريات ارتباطية كثيفة في علم الأحياء". إعلان يستطيع نموذج الذاكرة الارتباطية للخلية النجمية العصبية، الذي طوره الباحثون في دراستهم الجديدة، تخزين معلومات أكثر بكثير من شبكة هوبفيلد التقليدية، أي أكثر من كافية لتفسير سعة ذاكرة الدماغ. اتصالات معقدة يقول الباحثون إن الروابط البيولوجية الواسعة بين الخلايا العصبية والخلايا النجمية تدعم فكرة أن هذا النوع من النماذج قد يفسر كيفية عمل أنظمة تخزين الذاكرة في الدماغ، ويفترضون أن الذكريات داخل الخلايا النجمية تشفَّر من خلال تغيرات تدريجية في أنماط تدفق الكالسيوم، وتنقل هذه المعلومات إلى الخلايا العصبية بواسطة نواقل دبقية تطلق عند المشابك العصبية التي تتصل بها عمليات الخلايا النجمية. يقول كوزاتشكوف: "من خلال التنسيق الدقيق لهذين الأمرين – النمط المكاني الزمني للكالسيوم في الخلية، ثم الإشارة إلى الخلايا العصبية – يمكن الحصول على الديناميكيات اللازمة بالضبط لهذه السعة التخزينية المتزايدة بشكل هائل". إحدى السمات الرئيسية للنموذج الجديد هي أنه يتعامل مع الخلايا النجمية كمجموعات من العمليات، بدلا من كيان واحد، ويمكن اعتبار كل عملية من هذه العمليات وحدة حسابية واحدة، ونظرا لقدرات تخزين المعلومات العالية للذاكرات الترابطية الكثيفة، فإن نسبة كمية المعلومات المخزنة إلى عدد الوحدات الحسابية عالية جدا وتنمو مع حجم الشبكة، هذا لا يجعل النظام عالي السعة فحسب، بل أيضا موفرا للطاقة. بالإضافة إلى تقديم رؤية ثاقبة حول كيفية تخزين الدماغ للذاكرة، يمكن لهذا النموذج أيضا أن يوفر إرشادات للباحثين العاملين في مجال الذكاء الاصطناعي. ويمكن للباحثين- من خلال تغيير اتصال شبكة العمليات- إنشاء مجموعة واسعة من النماذج التي يمكن استكشافها لأغراض مختلفة. يقول سلوتين: "في حين أن علم الأعصاب ألهم في البداية أفكارا رئيسية في مجال الذكاء الاصطناعي ، إلا أن الخمسين عاما الماضية من أبحاث علم الأعصاب كان لها تأثير ضئيل على هذا المجال، وقد ابتعدت العديد من خوارزميات الذكاء الاصطناعي الحديثة عن التشبيهات العصبية. وبهذا المعنى، قد يكون هذا العمل أحد المساهمات الأولى في مجال الذكاء الاصطناعي المستمدة من أبحاث علم الأعصاب الحديثة."